中文名 | 中央空调冷冻水的模糊控制方法、装置及中央空调系统 | 公布号 | CN102734890A |
---|---|---|---|
授权日 | 2012年10月17日 | 申请号 | 2011100921968 |
申请日 | 2011年4月13日 | 申请人 | 上海信业智能科技股份有限公司 |
地 址 | 上海市浦东新区张东路1387号19幢101室 | 发明人 | 吴斌、张纪文、马志龙、张宇魁 |
Int.Cl. | F24F11/00(2006.01)I | 代理机构 | 北京同辉知识产权代理事务所(普通合伙) |
代理人 | 刘洪勋 | 类 别 | 发明专利 |
《中央空调冷冻水的模糊控制方法、装置及中央空调系统》涉及中央空调智能控制节能技术领域,特别地,涉及一种中央空调冷冻水的模糊控制方法、模糊控制装置及中央空调系统。
截至2011年4月,中央空调系统中设备的投入、电网的设计等都是按照最大负荷来设计的,因此中央空调大部分时间都处于部分负荷状态下,在实际运行中,中央空调负荷减少时并没有减少多少消耗的能量,显然这是不合理的。随着技术的进步,促进了变频器的小型化和实用化,为了降低中央空调系统的能源浪费,人们开始采用变频器来控制空调系统的水泵和风机实现节能的效果。
传统的中央空调控制方法通过采集水循环系统的压差和温度,采用可编程序控制器(PLC),对水泵进行PI(比例、积分)调节控制或者PID(比例、微分、积分)调节控制,以实现节能。PLC能实现简单的逻辑功能,最常见的节能控制方法有恒温差控制和恒压差控制,PLC控制方法可以达到一定的节能效果,而且PID控制原理简单、使用方便,价格也比较便宜,但其也存在一些不足:
PI或者PID调节器最重要调节系数Kp(比例系数)、Ti(积分时间常数)、Td(微分时间常数)只能是一个固定值,通常是在设备调试阶段,由经验丰富的调试人员手工整定的,数据一旦整定后,它就是固定不变的了,不能随着受控环境的变化而自动调整。而实际上,中央空调系统是一个时变的动态系统,其运行工况是和气候条件、建筑物材料、建筑内人流量等多种因素密不可分的,是随时变化的。因此,静态参数的控制方法并不适合于中央空调系统的节能控制。此外,PLC只能实现单参量的简单控制功能,当用于控制中央空调系统这样多参量、非线性时变高耦合复杂系统时,容易引起系统震荡,使得控制温度在较大范围内变化,及影响了系统的稳定性、又降低了空调系统的舒适性。
针对PID控制方法的不足,有些厂家提出了一些基于人工智能技术的控制方法,其中比较有代表性的是中央空调节能模糊控制方法。该控制方法主要是模拟人类的思维模式,当一个熟练的操作工人,遇到工况变化的情况,经过自身大脑的思维判断,给出控制量来控制系统。例如当工人发现冷冻水供回水温差小于某个设定值(系统负荷降低),可以选择降低冷冻泵的控制频率,达到节能的效果。而当冷冻水供回水温差大于某个设定值(系统负荷增加),则必须增加冷冻泵的控制频率,保证空调系统制冷效果。
中央空调节能模糊控制方法主要是模拟人类的思维模式来对中央空调系统进行控制,包括了温差偏差变量模糊化、温差偏差变化率模糊化、模糊推理、模糊量清晰化处理和清晰量输出等几个主要过程。和传统PID方法相比,更加符合中央空调的复杂性、动态性和模糊性,能够实现比PID更加精准的控制效果,实现更大的节能效果。但是它也同样存在着一些不足:
首先模糊控制方法是根据专家的丰富实践经验和思维过程构建的模糊规则,然后依此规则作为控制控制的基础,因此规则库制定方法对控制效率有着决定性作用,但是规则库的建立需要依赖大量的实践数据,从大量的应用环境中收集最有效的控制规则,但是如何评价采用的规则是最有效的,现在并没有定论。而且规则库考虑的是大多数应用的普遍性,但是每个具体应用的工况也是有所区别,因此并不能达到最优化的控制。
此外,2011年4月前技术中的规则库几乎都是根据所谓的专家经验来制定的固定规则,而人的判断总有偏差,而且实际系统在不同的运行条件下的确需要不同的规则库,传统模糊控制器无法满足此要求。
图1是基本模糊控制流程示意图;
图2是《中央空调冷冻水的模糊控制方法、装置及中央空调系统》模糊控制方法中动态修正模糊规则库实施例一的流程示意图;
图3是该发明模糊控制方法中动态修正模糊规则库实施例二的流程示意图;
图4是该发明模糊控制方法中动态修正模糊规则库实施例三的流程示意图;
图5是该发明模糊控制装置的结构框图;
图6是该发明模糊控制装置中规则修正模块实施例一的结构示意图;
图7是该发明模糊控制装置中规则修正模块实施例二的结构示意图;
图8是该发明模糊控制装置中规则修正模块实施例三的结构示意图;
图9是该发明中央空调系统实施例的结构框图。
|
|
|
|
|
|
|
|
|
严格来说,中央空调系统与您说的有一定的差别;中央空调系统目前来看还是没法实现“智能化”,也就是没法实现您说的“一按然后自己就根据室内情况自动调节温度湿度”;中央空调系统是一个比较模糊、笼统的概念,是为...
答:软接头、温度计、压力表、流量计、电动阀、电动蝶阀、蝶阀;
冷热气流相遇时会是空气中的水气液化,这是很正常的啊
2016年12月7日,《中央空调冷冻水的模糊控制方法、装置及中央空调系统》获得第十八届中国专利优秀奖。 2100433B
在介绍《中央空调冷冻水的模糊控制方法、装置及中央空调系统》具体实施方式之前,先了解模糊控制:
模糊控制的原理如下:计算机经中断采样从输入端获得被控制量的偏差值和偏差值的变化率,它们均为精确量,经模糊化处理后得到模糊集,再由模糊集和模糊控制规则,应用模糊推理法则进行模糊决策,得到相应的模糊控制集,然后经解模糊化处理后,得到精确的控制量去控制被控制对象。
然后,计算机中断等待第二次数据采样,进行第二次控制......。这样循环下去,就实现了被控对象的模糊控制。
模糊控制的核心是模糊控制规则和模糊推理两部分。其中,模糊控制规则是将人(专家)的操作经验和思维过程,总结成一系列的条件语句,即控制规则,从而得到模糊关系。而模糊推理则是总结人(专家)的控制行为,得出的模糊计算法则。
第一实施例
参照图1所示的基本模糊控制流程示意图,模糊控制可以概括为以下四个步骤:
步骤11、根据数据采样得到模糊控制器的输入变量;
步骤12、将输入变量的精确值变为模糊量;
步骤13、根据输入模糊量及模糊控制规则,应用模糊推理计算出模糊控制量;
步骤14、由模糊控制量计算精确控制量。
从上述步骤可以看出,基于模糊逻辑的智能控制-模糊控制,区别于基于精确模型的传统控制理论。传统控制的过程为:比较-计算-控制-执行,而模糊控制的过程为:识别-推理-决策-执行。不难看出,模糊控制是建立在被控动态过程的特征模式识别,并基于知识、经验的推理和智能决策基础上的控制。
《中央空调冷冻水的模糊控制方法、装置及中央空调系统》提供的中央空调冷冻水的模糊控制方法也包括以下基本模糊控制步骤:
步骤一,计算机从模糊控制器的输入端获得输入变量:二元信号(x1,x2),其中,x1为冷冻水侧温差,x2为冷冻水侧温差变化率。
其中,x1、x2均为精确量。
步骤二、x1经模糊化处理得到模糊集
步骤三、x2经模糊化处理得到模糊集
步骤四、将模糊控制规则定义为:IFX1是
Y是输出精确控制量y的模糊量。
步骤五、根据输入模糊量及模糊控制规则,应用模糊推理计算出模糊控制集Y;规则用下面表一的形式表达。
其中,精确控制量y的模糊集为Yk,k=1,2…Ny,即模糊控制集Y。
步骤六、由模糊控制集Y计算精确控制量(即模糊控制器的输出)y:
其中,公式(1)中
《中央空调冷冻水的模糊控制方法、装置及中央空调系统》中,精确输出量y为冷冻水泵的频率控制信号。
在本模糊控制方法中,所有隶属度函数都采用高斯型隶属度函数,即任一模糊集X的隶属函数为(2)式所示:
其中,cx为X的中心,σx为X的方差。
则,输入x1对应的Nx1个隶属度为:
输入x2对应的Nx2个隶属度为:
我们将规则写成一个表格形式,见表1:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
如果令总体规则数目为M,则显然有:M=Nx1·Nx2(5)
为了说明上的方便,我们将规则的后件用整数1~Ny来表示,亦即有(6)式:r(i,j)∈{1,2…Ny},i=1,2…Nx1,j=1,2…Nx2(6)
我们定义事件集合S如(7)式所示:S={[1,0],[0,1],[-1,0],[0,-1],[0,0]}(7)
再定义每个事件所对应的概率集合如(8)式所示:P(S)={P(A),A∈S}(8.1)
也就是说:P(S)={P(A),A=[1,0],[0,1],[-1,0],[0,-1],[0,0]}(8.2)
《中央空调冷冻水的模糊控制方法、装置及中央空调系统》提供的中央空调冷冻水的模糊控制方法是在传统模糊控制方法的基础上,增加变规则机制,所以,除了包括上述各基该步骤外,还包括:计算机自动动态修正模糊规则库的步骤。
参照图2,示出了《中央空调冷冻水的模糊控制方法、装置及中央空调系统》冷冻水的模糊控制方法中动态修正模糊规则库实施例一的流程示意图,具体包括:
步骤101、根据初始模糊规则库和初始概率集合输出的控制信号,计算初始制冷效率COPlast。
步骤103、随机选择上述初始规则库中的某个规则,产生该规则对应概率的修改方向,修改规则库。
步骤105、按照修改后的新规则库运行一段时间t,计算现在制冷效率COPnow。
步骤107、比较现在制冷效率COPnow相对于初始制冷效率COPlast是否满足一定条件;若否,执行步骤109;若是,执行步骤111。
步骤109、根据预设修正策略修正概率P,获得新的规则,返回步骤105。
步骤111,保存满足条件的预期规则库和预期概率集合。
在整个冷冻水侧的控制过程中,不断执行上述各步骤,根据实时采集的数据不断变化规则库中的规则,使整个中央空调冷冻水泵达到最节能的工作状态。
《中央空调冷冻水的模糊控制方法、装置及中央空调系统》实施例中,步骤103修改规则的方法可以是:
步骤S1、依据等概率分布随机产生标号(i,j),i∈{1,2…Nx1},j∈{1,2…Nx2};
步骤S2、令
其中,Psum=Pi,j([1,0]) Pi,j([0,1]) Pi,j([-1,0]) Pi,j([0,-1]) Pi,j([0,0])
易知∑A∈SP′(A)=1
步骤S3、按照概率集合P′随机生成一个事件A∈S,并令A=[m,n]。
步骤S4、将规则矩阵R中的第(i,j)个元素Ri,j做如下修改:
Ri,j=r(i,j) sgn(r(i m,j n)-r(i,j))(9)
其中,sgn()为符号函数,取值为±1、0。
在步骤107中,现在制冷效率COPnow相对于初始制冷效率COPlast需满足的条件为:现在制冷效率与初始制冷效率之差与初始制冷效率的比值小于0.5%、大于-0.5%。
即若,则P不变。(10)
在步骤109中,采取以下修正策略修正概率:
比较现在制冷效率COPnow相对于初始制冷效率COPlast是否增加?若是,提高上次变更方向的概率;若否,降低上次变更方向的概率,概率P的修改规则可以具体为:
若
若
另外,上述各步骤制冷效率(CoefficientofPerformance,COP)的计算为:令:系统一段时间内的制冷量为W,这段时冷冻水泵的能耗为J,这两个量可以通过实时计算获得。则系统在此段时间内的COP为:COP=W/J。
《中央空调冷冻水的模糊控制方法、装置及中央空调系统》提供的冷冻水模糊控制方法相比2011年4月前技术中其他模糊控制方法,采用了完全智能模糊控制,通过运行数据不断调整控制规则,获得最佳控制效果。保证了在相同制冷量的情况下,所消耗的设备能耗最低。
第二实施例
该实施是在实施例一的基础上作了进一步改进,参照图3所示,示出了《中央空调冷冻水的模糊控制方法、装置及中央空调系统》冷冻水的模糊控制方法中动态修正模糊规则库实施例二的流程示意图。
考虑到控制系统有可能是首次使用,之前可能没有存储模糊规则库和概率集合,所以在步骤101之前,增加了步骤100、1001、1002。具体为:
步骤100、判断模糊控制系统是否首次使用?若是则执行步骤1001,若否,则执行步骤1002。
步骤1001,按照预定方法初始化规则库和概率集合,作为初始规则库和初始概率集。
该步骤中,初始化规则库的预定方法为:
令一个Nx1×Nx2的矩阵的第(i,j)个元素Ri,j为下式所示:
其中,round(x)表示对x四舍五入。
将此矩阵存储为R_init,即初始规则表。
该步骤中,初始化概率集合的预定方法可以为:对一个Nx1×Nx2的集合矩阵P_init,其任意一个元素P_initi,j满足:
P_init={Pi,j([1,0]),Pi,j([0,1]),Pi,j([-1,0]),Pi,j([0,-1]),Pi,j([0,0])}={0.2,0.2,0.2,0.2,0.2}
对所有标号(i,j),i∈{1,2…Nx1},j∈{1,2…Nx2},进行如下处理:
若i=1,则Pi,j([-1,0])=0
若i=Nx1,则Pi,j([1,0])=0
若j=1,则Pi,j([0,-1])=0
若j=Nx2,则Pi,j([0,1])=0
将此矩阵存储为P_init,即初始规则表。
令R=R_init,P=P_init,则规则库、概率集合的初始化完成。
步骤1002,从数据库中调出上次运行结束时存储的规则库和概率集作为所述初始规则库和初始概率集合。
步骤101、根据初始模糊规则库和初始概率集合输出的控制信号,计算初始制冷效率COPlast。
步骤103、随机选择上述初始规则库中的某个规则,产生该规则对应概率的修改方向,修改规则库。
步骤105、按照修改后的新规则库运行一段时间t,计算现在制冷效率COPnow。
步骤107、比较现在制冷效率COPnow相对于初始制冷效率COPlast是否满足一定条件;若是,执行步骤111;若否,执行步骤109。
步骤109、根据预设修正策略修正概率P,获得新的规则,返回步骤105。
步骤111、保存满足条件的预期规则库和预期概率集合。
可见,该方法在应用过程中不需要任何人工干预,采用该模糊控制方法的控制系统能够在运行一段时间后完全自适应系统特性,具有高度的跟随性和应变能力。
第三实施例
参照图4,示出了《中央空调冷冻水的模糊控制方法、装置及中央空调系统》冷冻水的模糊控制方法中动态修正模糊规则库实施例三的流程示意图。
步骤100、判断模糊控制系统是否首次使用?若是,执行步骤1001;若否,执行步骤1002。
步骤1001、按照预定方法初始化规则库和概率集合,作为初始规则库和初始概率集。
步骤1002、从数据库中调出上次运行结束时存储的规则库和概率集作为所述初始规则库和初始概率集合。
步骤101、根据初始模糊规则库和初始概率集合输出的控制信号,计算初始制冷效率COPlast。
步骤103、随机选择上述初始规则库中的某个规则,产生该规则对应概率的修改方向,修改规则库。
步骤105、按照修改后的新规则库运行一段时间t,计算现在制冷效率COPnow。
步骤107、比较现在制冷效率COPnow相对于初始制冷效率COPlast是否满足一定条件;若是,执行步骤110;若否,执行步骤109。
步骤109、根据预设修正策略修正概率P,获得新的规则,返回步骤105。
步骤110、判断规则库上次的存储时刻与现在规则库的时间间隔是否超过预设时间阈值T;若是,执行步骤111;若否,返回步骤103,继续执行规则库和概率集合的修正动作。
步骤111,将上次存储的规则库和概率集合替换为现在规则库和概率集合。即令R_init=R,P_init=P,并将R_init,P_init存入数据库。
该实施例中,增加判断规则库上次的存储时刻与现在规则库的时间间隔是否超过预设时间阈值T的步骤,是为了定时保存已经获得的有效规则库和概率集合,防止系统在运行过程中因故障或外界因素如突然停电等事故不幸中断而丢失数据。
综上,上述各实施例提供的模糊控制方法,是根据工况实时优化规则库,这样模糊控制的时候能够更快收敛,保证制冷前提下比传统的固定规则的模糊控制系统的能耗更低。可见,中央空调系统使用《中央空调冷冻水的模糊控制方法、装置及中央空调系统》实施例提供的模糊控制方法,能够有效地控制和克服中央空调的非线性、时变性等特点,实现中央空调系统运行最优化。
对于前述的各方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是该领域技术人员应该知悉,《中央空调冷冻水的模糊控制方法、装置及中央空调系统》并不受所描述的动作顺序的限制,因为,依据该发明。某些步骤可以采用其他顺序或者同时进行。其次,该领域技术人员也应该知悉,说明书中描述的实施例均属于优选实施例,所涉及的动作和模块并不一定是该发明所必须的。
对应上述中央空调冷冻水的模糊控制方法实施例,《中央空调冷冻水的模糊控制方法、装置及中央空调系统》实施例还提供了一种中央空调冷冻水的模糊控制装置。
参照图5,示出了《中央空调冷冻水的模糊控制方法、装置及中央空调系统》模糊控制装置的结构框图,包括:
输入模块51、模糊化处理模块52、模糊规则库54、模糊推理机55、解模糊化处理模块56、输出模块57,还包括:规则修正模块53。
模糊控制装置的工作原理如下:计算机经中断采样从输入模块51获得冷冻侧温差和温差的变化率,它们均为精确量;经模糊化处理模块52处理后得到模糊集;再由模糊集和模糊规则库54中的模糊规则,由模糊推理机55应用模糊推理法则进行模糊决策,得到相应的模糊控制集;然后由解模糊化处理模块56处理后得到精确的控制量,即冷冻水泵的控制频率;最后由输出模块57将上述精确的冷冻水泵的控制频率输出给中央空调系统的冷冻水泵控制装置。其中,规则修正模块53用于不断动态修正规则库。
参照图6,示出了《中央空调冷冻水的模糊控制方法、装置及中央空调系统》模糊控制装置中规则修正模块实施例一的结构示意图,具体包括:
初始制冷效率计算单元61,用于根据初始模糊规则库和初始概率集合输出的控制信号,计算初始制冷效率COPlast;
规则修改单元62,用于随机选择初始规则库中的某个规则,产生该规则对应概率的修改方向,修改规则库;
现在制冷效率计算单元63,用于按照新规则库运行一段时间,计算现在制冷效率COPnow;
比较单元64,用于比较现在制冷效率COPnow相对于初始制冷效率COPlast是否满足一定条件;
继续修正单元65,用于当现在制冷效率COPnow相对于初始制冷效率COPlast不满足上述条件时,根据预设修正策略修正概率,获得新的规则,重复上述现在制冷效率计算和概率修改步骤,直至获得预期规则库和预期概率集合;
保存单元66,用于当现在制冷效率COPnow相对于初始制冷效率COPlast满足一定条件时,保存预期规则库及预期概率集合。
参照图7,示出了《中央空调冷冻水的模糊控制方法、装置及中央空调系统》模糊控制装置中规则修正模块实施例二的结构示意图,具体包括:
判断单元600,用于判断模糊规则库是否首次使用;
初始化单元601,用于当模糊规则库是首次使用时,按照预定方法初始化规则库和概率集合,作为初始规则库和初始概率集;
规则库调用单元602,用于当模糊规则库非首次使用时,调用上次运行结束存储的规则库和概率集作为初始规则库和初始概率集合。
其中,规则修改单元62修改规则的方法为:
依据等概率分布随机产生标号(i,j),i∈{1,2…Nx1},j∈{1,2…Nx2};
令
其中,Psum=Pi,j([1,0]) Pi,j([0,1]) Pi,j([-1,0]) Pi,j([0,-1]) Pi,j([0,0])
按照概率集合P′随机生成一个事件A∈S,并令A=[m,n]。
将规则矩阵R中的第(i,j)个元素Ri,j做如下修改:
Ri,j=r(i,j) sgn(r(i m,j n)-r(i,j))其中,sgn()为符号函数。
比较单元64判断现在制冷效率与初始制冷效率比满足的条件为:现在制冷效率与初始制冷效率之差与初始制冷效率的比值小于0.5%、大于负0.5%。
继续修正单元65,根据预设修正策略修正概率,获得新的规则的方法为:
比较所述现在制冷效率相对于所述初始制冷效率是否增加,若是,提高上次变更方向的概率;若否,降低上次变更方向的概率步骤中,概率P的修改规则具体为:
若
若
初始化单元601初始化规则库的方法为:
令一个Nx1×Nx2的矩阵的第(i,j)个元素Ri,j为下式所示:
其中,round(x)表示对x四舍五入。
则将此矩阵存储为R_init,即初始规则表。
初始化单元601初始化概率集合的方法为:
初始化一个Nx1×Nx2的集合矩阵作为初始概率集合P_init,其任意一个元素P_initi,j满足:
P_init={Pi,j([1,0]),Pi,j([0,1]),Pi,j([-1,0]),Pi,j([0,-1]),Pi,j([0,0])}={0.2,0.2,0.2,0.2,0.2}
对所有的标号(i,j),i∈{1,2…Nx1},j∈{1,2…Nx2},进行如下处理:
若i=1,则Pi,j([-1,0])=0
若i=Nx1,则Pi,j([1,0])=0
若j=1,则Pi,j([0,-1])=0
若j=Nx2,则Pi,j([0,1])=0
则将此矩阵存储为P_init,即初始概率集合。
参照图8,示出了《中央空调冷冻水的模糊控制方法、装置及中央空调系统》冷冻水模糊控制装置中规则修正模块实施例三的结构示意图。作为优选实施例,在图7所示实施例二的基础上,还包括:
定时存储单元67,用于判断上次规则库的存储时刻与现在规则库的时间间隔是否超过预设时间阈值T;若是,则将上次存储的规则库和概率集合替换为现在规则库和概率集合;若否,则保留上次存储的规则库和概率集合。
另外,《中央空调冷冻水的模糊控制方法、装置及中央空调系统》还提供了一种中央空调系统,参照图9,示出了该发明中央空调系统实施例的结构框图,具体包括:冷冻水循环系统91、冷冻水的模糊控制装置92、制冷系统93、冷却水循环系统94和冷却塔95等部分组成,其中,所述冷冻水的模糊控制装置92具体包括:输入模块51、模糊化处理模块52、规则修正模块53、模糊规则库54、模糊推理机55、解模糊化处理模块56、输出模块57。规则修正模块53可以是上述图6至8任一实施例所述的规则修正模块。
《中央空调冷冻水的模糊控制方法、装置及中央空调系统》所要解决的技术问题是提供一种中央空调冷冻水的模糊控制方法、装置及中央空调系统,能够实现冷冻水侧的恒温差控制,使系统在不同的运行条件下不仅保证制冷量,且总能耗最低。
《中央空调冷冻水的模糊控制方法、装置及中央空调系统》一方面提供了一种中央空调冷冻水的模糊控制方法,包括:采集冷冻水侧温差和温差变化率数据、模糊化处理、利用动态模糊规则库进行模糊推理、解模糊化处理、输出冷冻水泵频率控制信号等步骤,还包括:动态修正模糊规则库的步骤,具体包括:根据初始模糊规则库和初始概率集合输出的控制信号,计算初始制冷效率;随机选择所述初始规则库中的某个规则,产生该规则对应概率的修改方向,修改规则库;按照新规则库运行一段时间,计算现在制冷效率;比较所述现在制冷效率相对所述初始制冷效率是否满足一定条件;若否,根据预设修正策略修正概率,获得新的规则,返回现在制冷效率计算步骤;若是,保存预期规则库及预期概率集合。
优选的,在所述根据初始模糊规则库和概率集合计算初始制冷效率步骤之前,还包括:判断模糊规则库是否首次使用,若是,则按照预定方法初始化规则库和概率集合,作为初始规则库和初始概率集;若否,将上次运行结束存储的规则库和概率集作为所述初始规则库和初始概率集合。
优选的,所述随机选择所述初始规则库中的某个规则,产生该规则对应概率的修改方向,修改规则库的步骤具体为:
依据等概率分布随机产生标号(i,j),i∈{1,2…Nx1},j∈{1,2…Nx2};
令
按照概率集合P′随机生成一个事件A∈S,并令A=[m,n]。
将规则矩阵中的第(i,j)个元素Ri,j做如下修改:
Ri,j=r(i,j) sgn(r(i m,j n)-r(i,j))。
优选的,所述现在制冷效率相对所述初始制冷效率需满足的条件为:现在制冷效率与初始制冷效率之差与初始制冷效率的比值小于0.5%、大于负0.5%。
优选的,比较所述现在制冷效率相对于所述初始制冷效率是否满足一定条件,若否,采取以下修正策略修正概率,具体为:
比较所述现在制冷效率相对于所述初始制冷效率是否增加,若是,提高上次变更方向的概率;若否,降低上次变更方向的概率,概率P的修改规则具体为:
若
若
优选的,所述初始化规则库的方法为:
令一个Nx1×Nx2的矩阵的第(i,j)个元素Ri,j为下式所示:
其中,round(x)表示对x四舍五入。
则将此矩阵存储为R_init,即初始规则表。
优选的,所述初始化概率集合的方法为:
初始化一个Nx1×Nx2的集合矩阵P_init,其任意一个元素P_initi,j满足:
P_init={Pi,j([1,0]),Pi,j([0,1]),Pi,j([-1,0]),Pi,j([0,-1]),Pi,j([0,0])}={0.2,0.2,0.2,0.2,0.2}
对所有的标号(i,j),i∈{1,2…Nx1},j∈{1,2…Nx2},,进行如下处理:
若i=1,则Pi,j([-1,0])=0
若i=Nx1,则Pi,j([1,0])=0
若j=1,则Pi,j([0,-1])=0
若j=Nx2,则Pi,j([0,1])=0
令P=P_init。
优选的,在所述保存预期规则库和预期概率集合步骤之前还包括:判断上次规则库的存储时刻与现在规则库的时间间隔是否超过预设时间阈值T;若是,则将上次存储的规则库和概率集合替换为现在规则库和概率集合;若否,则保留上次存储的规则库和概率集合,继续运行规则库和概率集合的修正动作。
另一方面,提供了一种中央空调冷冻水的模糊控制装置,包括输入模块、模糊化处理模块、模糊规则库、解模糊化处理模块、模糊推理机、输出模块和规则修正模块,其中,所述规则修正模块具体包括:初始制冷效率计算单元,用于根据初始模糊规则库和初始概率集合输出的控制信号,计算初始制冷效率;规则修改单元,用于随机选择所述初始规则库中的某个规则,产生该规则对应概率的修改方向,修改规则库;现在制冷效率计算单元,用于按照新规则库运行一段时间,计算现在制冷效率;比较单元,用于比较所述现在制冷效率相对于所述初始制冷效率是否满足一定条件;继续修正单元,用于当现在制冷效率相对于所述初始制冷效率不满足一定条件时,根据预设修正策略修正概率,获得新的规则,重复上述现在制冷效率计算和概率修改步骤,直至获得预期规则库和预期概率集合;保存单元,用于当现在制冷效率相对于所述初始制冷效率满足一定条件时,保存预期规则库及预期概率集合。
优选的,所述的中央空调冷冻水的模糊控制装置还包括:判断单元,用于判断模糊规则库是否首次使用;
初始化单元,用于当模糊规则库是首次使用时,按照预定方法初始化规则库和概率集合,作为初始规则库和初始概率集;规则库调用单元,用于当模糊规则库非首次使用时,调用上次运行结束存储的规则库和概率集作为所述初始规则库和初始概率集合。
优选的,规则修改单元修改规则的方法为:
依据等概率分布随机产生标号(i,j),i∈{1,2…Nx1},j∈{1,2…Nx2};
令
其中,Psum=Pi,j([1,0]) Pi,j([0,1]) Pi,j([-1,0]) Pi,j([0,-1]) Pi,j([0,0])
按照概率集合P′随机生成一个事件A∈S,并令A=[m,n]。
将规则矩阵R中的第(i,j)个元素Ri,j做如下修改:
Ri,j=r(i,j) sgn(r(i m,j n)-r(i,j))其中,sgn()为符号函数。
优选的,所述比较单元判断现在制冷效率与初始制冷效率比满足的条件为:现在制冷效率与初始制冷效率之差与初始制冷效率的比值小于0.5%、大于负0.5%。
优选的,所述继续修正单元,根据预设修正策略修正概率,获得新的规则的方法为:
比较所述现在制冷效率相对于所述初始制冷效率是否增加,若是,提高上次变更方向的概率;若否,降低上次变更方向的概率步骤中,概率P的修改规则具体为:
若
若
优选的,所述初始化单元初始化规则库的方法为:
令一个Nx1×Nx2的矩阵的第(i,j)个元素Ri,j为下式所示:
其中,round(x)表示对x四舍五入。
则将此矩阵存储为R_init,即初始规则表。
优选的,所述初始化单元初始化概率集合的方法为:
初始化一个Nx1×Nx2的集合矩阵P_init,其任意一个元素P_initi,j满足:
P_init={Pi,j([1,0]),Pi,j([0,1]),Pi,j([-1,0]),Pi,j([0,-1]),Pi,j([0,0])}={0.2,0.2,0.2,0.2,0.2}
对所有的标号(i,j),i∈{1,2…Nx1},j∈{1,2…Nx2},进行如下处理:
若i=1,则Pi,j([-1,0])=0
若i=Nx1,则Pi,j([1,0])=0
若j=1,则Pi,j([0,-1])=0
若j=Nx2,则Pi,j([0,1])=0
则将此矩阵存储为P_init,即初始概率集合。
优选的,所述的中央空调冷冻水的模糊控制装置还包括:定时存储单元,用于判断上次规则库的存储时刻与现在规则库的时间间隔是否超过预设时间阈值T;若是,则将上次存储的规则库和概率集合替换为现在规则库和概率集合;若否,则保留上次存储的规则库和概率集合。
再一方面,提供了一种中央空调系统,包括上述任一中央空调冷冻水的模糊控制装置。
《中央空调冷冻水的模糊控制方法、装置及中央空调系统》提供的中央空调冷冻水的模糊控制方法,在传统模糊控制方法的基础上增加了变规则机制,即冷冻水采用动态规则模糊控制,根据运行状况在线更新规则库,这样模糊控制的时候能够更快收敛,保证制冷前提下比传统的固定规则的模糊控制系统的能耗更低。模拟人类技术专家作决策的过程不断修正规则库,使系统在不同的运行条件下应用最有效的规则库,实现冷冻水的恒温差控制。不仅符合中央空调系统的复杂性、动态性和模糊性要求,使控制简便,而且减少了能源浪费、提高了能源利用率、降低了中央空调运行成本,真正实现了中央空调系统的最优化运行-安全、舒适、节能。
1.一种中央空调冷冻水的模糊控制方法,其特征在于,包括:采集冷冻水侧温差和温差变化率数据、模糊化处理、利用动态模糊规则库进行模糊推理、解模糊化处理、输出冷冻水泵频率控制信号等步骤,还包括:动态修正模糊规则库的步骤,具体包括:根据初始模糊规则库和初始概率集合输出的控制信号,计算初始制冷效率;随机选择所述初始规则库中的某个规则,产生该规则对应概率的修改方向,修改规则库;按照新规则库运行一段时间,计算现在制冷效率;比较所述现在制冷效率相对所述初始制冷效率是否满足一定条件;若否,根据预设修正策略修正概率,获得新的规则,返回现在制冷效率计算步骤;若是,保存预期规则库及预期概率集合。
2.根据权利要求1所述的中央空调冷冻水的模糊控制方法,其特征在于,在所述根据初始模糊规则库和概率集合计算初始制冷效率步骤之前,还包括:判断模糊规则库是否首次使用,若是,则按照预定方法初始化规则库和概率集合,作为初始规则库和初始概率集;若否,将上次运行结束存储的规则库和概率集作为所述初始规则库和初始概率集合。
3.根据权利要求1所述的中央空调冷冻水的模糊控制方法,其特征在于,所述随机选择所述初始规则库中的某个规则,产生该规则对应概率的修改方向,修改规则库的步骤具体为:
依据等概率分布随机产生标号(i,j),i∈{1,2…Nx1},j∈{1,2…Nx2};
令
按照概率集合P′随机生成一个事件A∈S,并令A=[m,n]。
将规则矩阵中的第(i,j)个元素Ri,j做如下修改:
Ri,j=r(i,j) sgn(r(i m,j n)-r(i,j))。
4.根据权利要求1所述的中央空调冷冻水的模糊控制方法,其特征在于,所述现在制冷效率相对所述初始制冷效率需满足的条件为:现在制冷效率与初始制冷效率之差与初始制冷效率的比值小于0.5%、大于负0.5%。
5.根据权利要求1所述的中央空调冷冻水的模糊控制方法,其特征在于,
比较所述现在制冷效率相对于所述初始制冷效率是否满足一定条件,若否,采取以下修正策略修正概率,具体为:
比较所述现在制冷效率相对于所述初始制冷效率是否增加,若是,提高上次变更方向的概率;若否,降低上次变更方向的概率,概率P的修改规则具体为:
若
若
6.根据权利要求2所述的中央空调冷冻水的模糊控制方法,其特征在于,所述初始化规则库的方法为:
令一个Nx1×Nx2的矩阵的第(i,j)个元素Ri,j为下式所示:
其中,round(x)表示对x四舍五入。
则将此矩阵存储为R_init,即初始规则表。
7.根据权利要求2所述的中央空调冷冻水的模糊控制方法,其特征在于,所述初始化概率集合的方法为:
初始化一个Nx1×Nx2的集合矩阵P_init,其任意一个元素P_initi,j满足:
P_init={Pi,j([1,0]),Pi,j([0,1]),Pi,j([-1,0]),Pi,j([0,-1]),Pi,j([0,0])}={0.2,0.2,0.2,0.2,0.2}
对所有的标号(i,j),i∈{1,2…Nx1},j∈{1,2…Nx2},,进行如下处理:
若i=1,则Pi,j([-1,0])=0
若i=Nx1,则Pi,j([1,0])=0
若j=1,则Pi,j([0,-1])=0
若j=Nx2,则Pi,j([0,1])=0
令P=P_init。
8.根据权利要求1所述的中央空调冷冻水的模糊控制方法,其特征在于,在所述保存预期规则库和预期概率集合步骤之前还包括:判断上次规则库的存储时刻与现在规则库的时间间隔是否超过预设时间阈值T;若是,则将上次存储的规则库和概率集合替换为现在规则库和概率集合;若否,则保留上次存储的规则库和概率集合,继续运行规则库和概率集合的修正动作。
9.一种中央空调冷冻水的模糊控制装置,其特征在于,包括输入模块、模糊化处理模块、模糊规则库、解模糊化处理模块、模糊推理机、输出模块和规则修正模块,其中,所述规则修正模块具体包括:初始制冷效率计算单元,用于根据初始模糊规则库和初始概率集合输出的控制信号,计算初始制冷效率;规则修改单元,用于随机选择所述初始规则库中的某个规则,产生该规则对应概率的修改方向,修改规则库;现在制冷效率计算单元,用于按照新规则库运行一段时间,计算现在制冷效率;比较单元,用于比较所述现在制冷效率相对于所述初始制冷效率是否满足一定条件;继续修正单元,用于当现在制冷效率相对于所述初始制冷效率不满足一定条件时,根据预设修正策略修正概率,获得新的规则,重复上述现在制冷效率计算和概率修改步骤,直至获得预期规则库和预期概率集合;保存单元,用于当现在制冷效率相对于所述初始制冷效率满足一定条件时,保存预期规则库及预期概率集合。
10.根据权利要求9所述的中央空调冷冻水的模糊控制装置,其特征在于,还包括:判断单元,用于判断模糊规则库是否首次使用;初始化单元,用于当模糊规则库是首次使用时,按照预定方法初始化规则库和概率集合,作为初始规则库和初始概率集;规则库调用单元,用于当模糊规则库非首次使用时,调用上次运行结束存储的规则库和概率集作为所述初始规则库和初始概率集合。
11.根据权利要求9所述的中央空调冷冻水的模糊控制装置,其特征在于,规则修改单元修改规则的方法为:依据等概率分布随机产生标号(i,j),i∈{1,2…Nx1},j∈{1,2…Nx2};
令
其中,Psum=Pi,j([1,0]) Pi,j([0,1]) Pi,j([-1,0]) Pi,j([0,-1]) Pi,j([0,0])
按照概率集合P′随机生成一个事件A∈S,并令A=[m,n]。
将规则矩阵R中的第(i,j)个元素Ri,j做如下修改:
Ri,j=r(i,j) sgn(r(i m,j n)-r(i,j))其中,sgn()为符号函数。
12.根据权利要求9所述的中央空调冷冻水的模糊控制装置,其特征在于,所述比较单元判断现在制冷效率与初始制冷效率比满足的条件为:现在制冷效率与初始制冷效率之差与初始制冷效率的比值小于0.5%、大于负0.5%。
13.根据权利要求9所述的中央空调冷冻水的模糊控制装置,其特征在于,所述继续修正单元,根据预设修正策略修正概率,获得新的规则的方法为:
比较所述现在制冷效率相对于所述初始制冷效率是否增加,若是,提高上次变更方向的概率;若否,降低上次变更方向的概率步骤中,概率P的修改规则具体为:
若
若
14.根据权利要求10所述的中央空调冷冻水的模糊控制装置,其特征在于,所述初始化单元初始化规则库的方法为:
令一个Nx1×Nx2的矩阵的第(i,j)个元素Ri,j为下式所示:
其中,round(x)表示对x四舍五入。
则将此矩阵存储为R_init,即初始规则表。
15.根据权利要求10所述的中央空调冷冻水的模糊控制装置,其特征在于,所述初始化单元初始化概率集合的方法为:初始化一个Nx1×Nx2的集合矩阵P_init,其任意一个元素P_initi,j满足:
P_init={Pi,j([1,0]),Pi,j([0,1]),Pi,j([-1,0]),Pi,j([0,-1]),Pi,j([0,0])}={0.2,0.2,0.2,0.2,0.2}
对所有的标号(i,j),i∈{1,2…Nx1},j∈{1,2…Nx2},进行如下处理:
若i=1,则Pi,j([-1,0])=0
若i=Nx1,则Pi,j([1,0])=0
若j=1,则Pi,j([0,-1])=0
若j=Nx2,则Pi,j([0,1])=0
则将此矩阵存储为P_init,即初始概率集合。
16.根据权利要求9所述的中央空调冷冻水的模糊控制装置,其特征在于,还包括:定时存储单元,用于判断上次规则库的存储时刻与现在规则库的时间间隔是否超过预设时间阈值T;若是,则将上次存储的规则库和概率集合替换为现在规则库和概率集合;若否,则保留上次存储的规则库和概率集合。
17.一种中央空调系统,其特征在于,包括权利要求9~16任一所述的中央空调冷冻水的模糊控制装置。
本文对模糊控制在中央空调系统中的应用进行了详细分析,通过Matlab与Simulink进行仿真,并与传统的PID控制进行分析对比,得出模糊控制具有更优越的静态、动态性能,更强的适应性和鲁棒性,在中央空调系统中具有很高的应用价值。
中央空调系统综合模糊控制技术讲稿——内容包含空调系统智能模糊控制技术,变频技术简介,变频节能的原理与应用,模糊控制简介,模糊控制原理图,酒店中央空调系统配置。
《一种空调器频率的控制方法及装置》实施例提供了一种空调器频率的控制方法,以达到能够快速调整室内温度的目的。
《一种空调器频率的控制方法及装置》包括:根据空调器的工作模式,确定N个采样时刻所述空调器分别对应的N个温度差值,N为大于等于2的整数;根据所述N个温度差值,建立所述空调器频率的变化函数,所述变化函数中包括比例系数、积分系数以及微分系数;根据所述空调器的内环温度以及外环温度,确定所述比例系数、积分系数以及微分系数的数值;根据所述比例系数、积分系数以及微分系数的数值,确定所述空调器频率的变化值。
在一个实施方式中,根据空调器的工作模式,确定N个采样时刻所述空调器分别对应的N个温度差值具体包括:当空调器的工作模式为制冷模式时,按照下述公式确定N个采样时刻所述空调器分别对应的N个温度差值:ΔT[i]=T[i]-Tset
当空调器的工作模式为制热模式时,按照下述公式确定N个采样时刻所述空调器分别对应的N个温度差值:ΔT[i]=Tset-T[i]
其中,ΔT[i]代表第i个采样时刻所述空调器对应的温度差值,T[i]代表第i个采样时刻所述空调器对应的内环温度,Tset代表所述空调器设定的温度。
在一个实施方式中,按照下述公式根据所述N个温度差值,建立所述空调器频率的变化函数:
其中,ΔF[i]代表第i个采样时刻所述空调器频率的变化函数,To代表采样周期,KP代表所述比例系数,KI代表所述积分系数,KD代表所述微分系数。
在一个实施方式中,所述根据所述空调器的内环温度以及外环温度,确定所述比例系数、积分系数以及微分系数的数值具体包括:预先划分内环温度的分隔区间以及外环温度的分隔区间;确定所述空调器的内环温度所处的第一分隔区间以及所述空调器的外环温度所处的第二分隔区间;将与所述第一分隔区间和所述第二分隔区间同时对应的比例系数数值确定为所述变化函数中比例系数的数值;将与所述第一分隔区间和所述第二分隔区间同时对应的积分系数数值确定为所述变化函数中积分系数的数值;将与所述第一分隔区间和所述第二分隔区间同时对应的微分系数数值确定为所述变化函数中微分系数的数值。
在一个实施方式中,所述根据所述比例系数、积分系数以及微分系数的数值,确定所述空调器频率的变化值具体包括:确定待计算的采样时刻的个数;根据所述比例系数、积分系数以及微分系数的数值,按照下述公式确定所述空调器频率的变化值:
其中,ΔF[i]代表第i个采样时刻所述空调器频率的变化值,KP[m,n]代表所述比例系数的数值,KI[m,n]代表所述积分系数的数值,KD[m,n]代表所述微分系数的数值,To代表采样周期,ΔT[i]代表第i个采样时刻所述空调器对应的温度差值,M代表确定的所述待计算的采样时刻的个数,M为大于或者等于1的整数。
《一种空调器频率的控制方法及装置》实施例还提供了一种空调器频率的控制装置,以达到能够快速调整室内温度的目的,该装置包括:
温度差值确定单元,用于根据空调器的工作模式,确定N个采样时刻所述空调器分别对应的N个温度差值,N为大于等于2的整数;频率变化函数建立单元,用于根据所述N个温度差值,建立所述空调器频率的变化函数,所述变化函数中包括比例系数、积分系数以及微分系数;系数数值确定单元,用于根据所述空调器的内环温度以及外环温度,确定所述比例系数、积分系数以及微分系数的数值;频率变化值确定单元,用于根据所述比例系数、积分系数以及微分系数的数值,确定所述空调器频率的变化值。
在一个实施方式中,所述温度差值确定单元具体包括:第一确定模块,用于当空调器的工作模式为制冷模式时,按照下述公式确定N个采样时刻所述空调器分别对应的N个温度差值:ΔT[i]=T[i]-Tset
第二确定模块,用于当空调器的工作模式为制热模式时,按照下述公式确定N个采样时刻所述空调器分别对应的N个温度差值:ΔT[i]=Tset-T[i]
其中,ΔT[i]代表第i个采样时刻所述空调器对应的温度差值,T[i]代表第i个采样时刻所述空调器对应的内环温度,Tset代表所述空调器设定的温度。
在一个实施方式中,所述频率变化函数建立单元具体包括:公式建立模块,用于按照下述公式根据所述N个温度差值,建立所述空调器频率的变化函数:
其中,ΔF[i]代表第i个采样时刻所述空调器频率的变化函数,To代表采样周期,KP代表所述比例系数,KI代表所述积分系数,KD代表所述微分系数。
在一个实施方式中,所述系数数值确定单元具体包括:分隔区间划分模块,用于预先划分内环温度的分隔区间以及外环温度的分隔区间;分隔区间确定模块,用于确定所述空调器的内环温度所处的第一分隔区间以及所述空调器的外环温度所处的第二分隔区间;比例系数数值确定模块,用于将与所述第一分隔区间和所述第二分隔区间同时对应的比例系数数值确定为所述变化函数中比例系数的数值;积分系数数值确定模块,用于将与所述第一分隔区间和所述第二分隔区间同时对应的积分系数数值确定为所述变化函数中积分系数的数值;微分系数数值确定模块,用于将与所述第一分隔区间和所述第二分隔区间同时对应的微分系数数值确定为所述变化函数中微分系数的数值。
在一个实施方式中,所述频率变化值确定单元具体包括:采样时刻个数确定模块,用于确定待计算的采样时刻的个数;计算模块,用于根据所述比例系数、积分系数以及微分系数的数值,按照下述公式确定所述空调器频率的变化值:
其中,ΔF[i]代表第i个采样时刻所述空调器频率的变化值,KP[m,n]代表所述比例系数的数值,KI[m,n]代表所述积分系数的数值,KD[m,n]代表所述微分系数的数值,To代表采样周期,ΔT[i]代表第i个采样时刻所述空调器对应的温度差值,M代表确定的所述待计算的采样时刻的个数,M为大于或者等于1的整数。
《一种空调器频率的控制方法及装置》通过将模糊算术与PID控制方法相结合,利用PID控制方法构建出空调器频率变化的函数,进而通过模糊算术获取空调器频率变化的函数中的比例系数、积分系数以及微分系数的数值,从而能够确定出空调器频率的变化值。该发明提供的一种空调器频率的控制方法及装置,不仅比2015年之前的技术中的模糊算术运算方法快,而且适用范围更广,温度控制的精度也较高。
图1为《一种空调器频率的控制方法及装置》实施例提供的一种空调器频率控制的方法流程图;
图2为《一种空调器频率的控制方法及装置》实施例提供的一种空调器频率控制的装置功能模块图。
|
|
《中央空调系统模糊控制节能技术及应用》内容具有较强的实用性和创新性,可作为从事中央空调系统控制的设计人员、操作人员、维护人员和管理人员的培训或参考资料,也可作为制冷空调专业研究生、本科生的教学参考书或专题讲座教材。