为了使交流电有很方便的动力转换功能, 通常工业用电,三根正弦交流电。电流相位(反映电流的方向 大小)相互相差120度。通常我们将每一根这样的导线称为相线(火线),通常电力传输是以三相四线的方式,三相电...
1、是的,保护接地主要适用于中性点不直接接地的三相三线制供电系统中。2、保护接地,是为防止电气装置的金属外壳、配电装置的构架和线路杆塔等带电危及人身和设备安全而进行的接地。所谓保护接地就是将正常情况下...
中性点直接接地的系统属于较大电流接地系统,一般通过接地点的电流较大,可能会烧坏电气设备。发生故障后,继电保护会立即动作,使开关跳闸,消除故障。目前我国110kV以上系统大都采用中性点直接接地。对于不同...
减少在低压三相四线中性点直接接地低压供电系统中零线故障造 成设备运行不正常的探讨 在我工作的二十几年中经历很多次低压三相四线中性点直接接 地供电系统中零线的故障(以下简称零线故障) ,特别是近几年,随 着人们生活水平的提高, 每家每户都有不少的家用电器, 零线的故障 造成的损失就更大了, 2010年就发生此类故障 3 起,直接经济损失 达 30万元,又一起甚至差点造成火灾。造成这种损失的原理是在三 相四线不平衡供电系统中, 零线断线后,负荷中性点将向负荷大的那 相位移,负荷大的那相电压降低了;而负荷小的相电压升高了,三相 负荷不平衡程度愈严重, 负荷中性点位移量就越大。 负荷端相电压对 称性被破坏,出现了不同程度的不平衡, 负荷大的那相电压可降低至 30~60v,使灯泡发红,空调等电机类电器因无法启动而烧毁,电磁 炉的开关电源类电器因电压过低无法使用; 而负荷小的那相则相电压 可升高到 2
2.3_中性点直接接地电网的零序电流及方向保护
中性点直接接地系统IT系统
电源变压器中性点不接地(或通过高阻抗接地),而电气设备外壳采用保护接地。电力系统的带电部分与大地间无直接连接(或经电阻接地),而受电设备的外露导电部分则通过保护线直接接地。
这种系统主要用于10KV及35KV的高压系统和矿山、井下的某些低压供电系统,不适合在施工现场应用,故在此不再分析。
建设部新颁发的《建筑施工安全检查标准》(JGJ59-2011)规定:施工现场专用的中性点直接接地的低压配电系统应采用TN-S接零保护系统。因此,TN-S接零保护系统在施工现场中得到了广泛的应用,但如果PE线发生断裂或与电气设备未做好电气连接,重复接地阻值达不到安全的要求,也同样会发生触电事故,为了提高TN-S接零保护系统的安全性,在此提出等电位联接概念。所谓等电位联结,是将电气设备外露可导电部分与系统外可导电部分(如混凝土中的主筋、各种金属管道等)通过保护零线(PE线)作实质上的电气连接,使二者的电位趋于相等。应注意差异,即等电位联结线正常时无电流通过,只传递电位,故障时才有电流通过。等电位联结的作用。(1)总等电位联结能降低预期接触电压;(2)总等电位联结能消除装置外沿PE线传导故障电压带来的电击危险。因此施工现场也应逐步推广该技术。当然,无论采取何种接地形式都绝不是万无一失绝对安全的。施工现场临时用电必须严格按JGJ46-88规范要求进行系统的设置和漏电保护器的使用,严格履行施工用电设计、验收制度,规范管理,才能杜绝事故的发生。2100433B
供电可靠性较低:因为中性点直接接地系统发生单相接地时,短路电流很大,必须断开故障电路,中断对用户的供电,故供电可靠性较低。为了提高供电的可靠性,在中性点直接接地系统的线路上,广泛装设自动重合闸装置,当发生单相短路时,继电保护将电路断开,经一段时间后,自动重合闸装置再将电路重新合上。如果单相短路是暂时性的,线路接通后对用户恢复供电,如果单相短路是永久性的,继电保护将再一次断开电路。据统计有70%以上短路是暂时性的,因为重合闸的成功率在70%以上。
单相短路电流很大,中性点直接接地系统发生单相短路时,相当于将电源的正负极直接短路,故短路电流很大,可能须选用大容量的开关,增加了投资。
中性点直接接地系统发生单相接地时,很大的单相电流只在一相内流过,在三相导线附近产生,较强的单相磁场,在这个单向磁场会在附近的通讯路感应电势,产生电磁干扰,故在设计电力线路时要考虑与通讯线路保持一定的距离,避免与通讯线路平行,以减少电磁干扰。
中性点直接接地系统TN系统
电源变压器中性点接地,设备外露部分与中性线相连。根据电气设备外露导电部分与系统连接的不同方式又可分三类:即TN-C系统、TN-S系统、TN-C-S系统。
其特点是:电源变压器中性点接地,保护零线(PE)与工作零线(N)共用。
(1)它是利用中性点接地系统的中性线(零线)作为故障电流的回流导线,当电气设备相线碰壳,故障电流经零线回到中点,由于短路电流大,因此可采用过电流保护器切断电源。
(2)TN-C系统适用于三相负荷基本平衡场合,如果三相负荷不平衡,则PEN线中有不平衡电流,再加一些负荷设备引起的谐波电流也会注入PEN,从而中性线N带电,且极有可能高于50V,它不但使设备机壳带电,对人身造成不安全,而且还无法取得稳定的基准电位;
(3)TN-C系统应将PEN线重复接地,其作用是当接零的设备发生相与外壳接触时,可以有效地降低零线对地电压。
TN-C系统存在以下缺陷:
(1)当三相负载不平衡时,在零线上出现不平衡电流,零线对地呈现电压。当三相负载严重不平衡时,触及零线可能导致触电事故。
(2)通过漏电保护开关的零线,只能作为工作零线,不能作为电气设备的保护零线,这是由于漏电开关的工作原理所决定的。
(3)对接有二极漏电保护开关的单相用电设备,如用于TN-C系统中其金属外壳的保护零线,严禁与该电路的工作零线相连接,也不允许接在漏电保护开关前面的PEN线上,但在使用中极易发生误接。
(4)重复接地装置的连接线,严禁与通过漏电开关的工作零线相连接。
TN-S供电系统,将工作零线与保护零线完全分开,从而克服了TN-C供电系统的缺陷,所以施工现场已经不再使用TN-C系统。
整个系统的中性线(N)与保护线(PE)是分开的。
(1)当电气设备相线碰壳,直接短路,可采用过电流保护器切断电源;
(2)当N线断开,如三相负荷不平衡,中性点电位升高,但外壳无电位,PE线也无电位;
(3)TN-S系统PE线首末端应做重复接地,以减少PE线断线造成的危险。
(4)TN-S系统适用于工业企业、大型民用建筑。
单独使用独一变压器供电的或变配电所距施工现场较近的工地基本上都采用了TN-S系统,与逐级漏电保护相配合,确实起到了保障施工用电安全的作用,但TN-S系统必须注意几个问题:
(1)保护零线绝对不允许断开。否则在接零设备发生带电部分碰壳或是漏电时,就构不成单相回路,电源就不会自动切断,就会产生两个后果:一是使接零设备失去安全保护;二是使后面的其他完好的接零设备外壳带电,引起大范围的电气设备外壳带电,造成可怕的触电威胁。因此在《JGJ46-88施工现场临时用电安全技术规范》规定专用保护线必须在首末端做重复接地。
(2)同一用电系统中的电器设备绝对不允许部分接地部分接零。否则当保护接地的设备发生漏电时,会使中性点接地线电位升高,造成所有采用保护接零的设备外壳带电。
(3)保护接零PE线的材料及连接要求:保护零线的截面应不小于工作零线的截面,并使用黄/绿双色线。与电气设备连接的保护零线应为截面不少于2.5mm2的绝缘多股铜线。保护零线与电气设备连接应采用铜鼻子等可靠连接,不得采用铰接;电气设备接线柱应镀锌或涂防腐油脂,保护零线在配电箱中应通过端子板连接,在其他地方不得有接头出现。
它由两个接地系统组成,第一部分是TN-C系统,第二部分是TN-S系统,其分界面在N线与PE线的连接点。
(1)当电气设备发生单相碰壳,同TN-S系统;
(2)当N线断开,故障同TN-S系统;
(3)TN-C-S系统中PEN应重复接地,而N线不宜重复接地。
PE线连接的设备外壳在正常运行时始终不会带电,所以TN-C-S系统提高了操作人员及设备的安全性。施工现场一般当变台距现场较远或没有施工专用变压器时采取TN-C-S系统。