各种因素对吸收谱带的影响表现为谱带位移、谱带强度的变化、谱带精细结构的出现或消失等。

谱带位移包括蓝移(或紫移,hypsochromic shift or blue shift))和红移(bathochromic shift or red shift)。蓝移(或紫移)指吸收峰向短波长移动,红移指吸收峰向长波长移动。吸收峰强度变化包括增色效应(hyperchromic effect)和减色效应(hypochromic effect)。前者指吸收强度增加,后者指吸收强度减小。各种因素对吸收谱带的影响结果总结于右图中。

影响有机化合物紫外吸收光谱的因素有内因(分子内的共轭效应、位阻效应、助色效应等)和外因(溶剂的极性、酸碱性等溶剂效应)。由于受到溶剂极性和酸碱性等的影响,将使这些溶质的吸收峰的波长、强度以及形状发生不同程度的变化。这是因为溶剂分子和溶质分子间可能形成氢键,或极性溶剂分子的偶极使溶质分子的极性增强,因而在极性溶剂中π→π * 跃迁所需能量减小,吸收波长红移(向长波长方向移动);而在极性溶剂中, n→π * 跃迁所需能量增大,吸收波长蓝移(向短波长方向移动),溶剂效应示意图见右图。

极性溶剂不仅影响溶质吸收波长的位移,而且还影响吸收峰吸收强度和它的形状,如苯酚的B吸收带,在不同极性溶剂中,其强度和形状均受到影响、在非极性溶剂正庚烷中,可清晰看到苯酚B吸收带的精细结构,但在极性溶剂乙醇中,苯酚B吸收带的精细结构消失,仅存在一个宽的吸收峰,而且其吸收强度也明显减弱。在许多芳香烃化合物中均有此现象,由于有机化合物在极性溶剂中存在溶剂效应,所以在记录紫外吸收光谱时,应注明所用的溶剂。

另外,由于溶剂本身在紫外光谱区也有其吸收波长范围,故在选用溶剂时,必须考虑它们的干扰。

有机物的紫外光谱

电子能级和跃迁

溶剂对紫外光谱的影响

有机物的紫外光谱等等

紫外可见吸收光谱造价信息

市场价 信息价 询价
材料名称 规格/型号 市场价
(除税)
工程建议价
(除税)
行情 品牌 单位 税率 供应商 报价日期
光谱蜡烛灯 功率:3W/5W 查看价格 查看价格

罗化光源

13% 深圳市罗化光源有限公司
光谱蜡烛灯 功率:3W/5W 查看价格 查看价格

罗化光源

13% 深圳市罗化光源有限公司
光谱CSP双头方形筒灯 功率:15-20W 查看价格 查看价格

罗化光源

13% 深圳市罗化光源有限公司
光谱教室护眼格栅灯 LH-JS1200 查看价格 查看价格

LOHUA

13% 深圳市罗化光源有限公司
光谱教室黑板灯 LH-HB1200 查看价格 查看价格

LOHUA

13% 深圳市罗化光源有限公司
紫外线消毒设备 设备框架304L不锈钢材质 模块:德国进口中压uvtechnik 32支 PLC+触摸屏 1个 自动清洗系统配套空压机 1 查看价格 查看价格

广州威固

13% 广西立淇环保有限公司
紫外线消毒设备 设备框架304L不锈钢材质 模块德国进口中压uvtechnik 32支 PLC+触摸屏 查看价格 查看价格

深圳浩然兴

13% 广西立淇环保有限公司
紫外线消毒设备 不锈钢材质 模块:德国进口中压uvtechnik 32支 PLC+触摸屏 自动清洗系统 查看价格 查看价格

桂润

13% 广西立淇环保有限公司
材料名称 规格/型号 除税
信息价
含税
信息价
行情 品牌 单位 税率 地区/时间
光谱 查看价格 查看价格

台班 韶关市2010年7月信息价
紫外火焰探测器 JTG-ZM-GST9614 查看价格 查看价格

茂名市2009年9月信息价
紫外火焰探测器 JTG-ZF-GST9714 查看价格 查看价格

茂名市2009年9月信息价
紫外火焰探测器 JTG-ZF-GST9714 查看价格 查看价格

茂名市2009年7月信息价
紫外火焰探测器 JTG-ZM-GST9614 查看价格 查看价格

茂名市2009年6月信息价
紫外火焰探测器 JTG-ZM-GST9614 查看价格 查看价格

茂名市2009年5月信息价
紫外火焰探测器 JTG-ZM-GST9614 查看价格 查看价格

茂名市2009年4月信息价
紫外火焰探测器 JTG-ZM-GST9614 查看价格 查看价格

茂名市2009年2月信息价
材料名称 规格/需求量 报价数 最新报价
(元)
供应商 报价地区 最新报价时间
气相分子吸收光谱 (详见技术要求)|1台 1 查看价格 上海北裕分析仪器股份有限公司 全国   2022-10-11
原子吸收光谱仪及配套设备 iCE 3000|1套 1 查看价格 赛默飞世尔科技(中国)有限公司 广西  玉林市 2021-10-19
紫外光处理 紫外光处理一次|800m² 0 查看价格 佛山市晨新航不锈钢有限公司 广东  江门市 2015-10-19
原子吸收分光光谱 1. 用 途:采用原子吸收光谱法, 用于环境土壤、农产品、药品等中多种微量金属元素的定量分析.2.仪器主机 :火焰/石墨炉全自动一体化设计,火焰、石墨炉原子化器无需机械切换,无需调整石墨炉自动进样器|1台 1 查看价格 南京海纳仪器设备有限公司 全国   2020-09-22
直读光谱 双光室设计(可见光室和真空紫外光室),保证长短波达到最佳性能、可测不锈钢中最低30ppm的氮元素、智能通用曲线配置,可满足不同种材料的盲测|1台 3 查看价格 东莞市绍宇仪器设备有限公司 广东   2020-09-04
发射光谱 发射光谱仪|1台 3 查看价格 湖北盛德坤智能科技有限公司 全国   2022-09-15
光谱相机 6个光谱通道、"双红边"植被敏感波段、12bit量化、环境光同步校正,可以精确获取目标的光谱反射率数据.|1套 1 查看价格 深圳市求机科技有限公司 全国   2022-05-25
紫外光灭菌灯 1.采用紫外线灯进行杀菌灭菌,紫外线消毒灯管,铝合金灯架.|6台 3 查看价格 四川点金厨房设备有限公司 四川   2021-09-13

紫外可见吸收光谱应用广泛,不仅可进行定量分析,还可利用吸收峰的特性进行定性分析和简单的结构分析,测定一些平衡常数、配合物配位比等;也可用于无机化合物和有机化合物的分析,对于常量、微量、多组分都可测定。

物质的紫外吸收光谱基本上是其分子中生色团及助色团的特征,而不是整个分子的特征。如果物质组成的变化不影响生色团和助色团,就不会显著地影响其吸收光谱,如甲苯和乙苯具有相同的紫外吸收光谱。另外,外界因素如溶剂的改变也会影响吸收光谱,在极性溶剂中某些化合物吸收光谱的精细结构会消失,成为一个宽带。所以,只根据紫外光谱是不能完全确定物质的分子结构,还必须与红外吸收光谱、核磁共振波谱、质谱以及其他化学、物理方法共同配合才能得出可靠的结论。

1、化合物的鉴定

利用紫外光谱可以推导有机化合物的分子骨架中是否含有共轭结构体系,如C=C-C=C、C=C-C=O、苯环等。利用紫外光谱鉴定有机化合物远不如利用红外光谱有效,因为很多化合物在紫外没有吸收或者只有微弱的吸收,并且紫外光谱一般比较简单,特征性不强。利用紫外光谱可以用来检验一些具有大的共轭体系或发色官能团的化合物,可以作为其他鉴定方法的补充。

(1)如果一个化合物在紫外区是透明的,则说明分子中不存在共轭体系,不含有醛基、酮基或溴和碘。可能是脂肪族碳氢化合物、胺、腈、醇等不含双键或环状共轭体系的化合物。

(2)如果在210~250nm有强吸收,表示有K吸收带,则可能含有两个双键的共轭体系,如共轭二烯或α,β-不饱和酮等。同样在260,300,330nm处有高强度K吸收带,在表示有三个、四个和五个共轭体系存在。

(3)如果在260~300nm有中强吸收(ε=200~1 000),则表示有B带吸收,体系中可能有苯环存在。如果苯环上有共轭的生色基团存在时,则ε可以大于10 000。

(4)如果在250~300nm有弱吸收带(R吸收带),则可能含有简单的非共轭并含有n电子的生色基团,如羰基等。

2、纯度检查

如果有机化合物在紫外可见光区没有明显的吸收峰,而杂质在紫外区有较强的吸收,则可利用紫外光谱检验化合物的纯度。

3、异构体的确定

对于异构体的确定,可以通过经验规则计算出λmax值,与实测值比较,即可证实化合物是哪种异构体。如: 乙酰乙酸乙酯的酮-烯醇式互变异构

4、位阻作用的测定

由于位阻作用会影响共轭体系的共平面性质,当组成共轭体系的生色基团近似处于同一平面,两个生色基团具有较大的共振作用时,λmax不改变,εmax略为降低,空间位阻作用较小;当两个生色基团具有部分共振作用,两共振体系部分偏离共平面时,λmax和εmax略有降低;当连接两生色基团的单键或双键被扭曲得很厉害,以致两生色基团基本未共轭,或具有极小共振作用或无共振作用,剧烈影响其UV光谱特征时,情况较为复杂化。在多数情况下,该化合物的紫外光谱特征近似等于它所含孤立生色基团光谱的"加合"。

5、氢键强度的测定

溶剂分子与溶质分子缔合生成氢键时,对溶质分子的UV光谱有较大的影响。对于羰基化合物,根据在极性溶剂和非极性溶剂中R带的差别,可以近似测定氢键的强度。

6、定量分析

朗伯-比尔定律是紫外-可见吸收光谱法进行定量分析的理论基础,它的数学表达式为: A = ε b c

在数值上等于1mol/L的吸光物质在1cm光程中的吸光度,ε= A/CL,与入射光波长、溶液的性质及温度有关。

(1)吸光物质在特定波长和溶剂中的一个特征常数,定性的主要依据

(2)值愈大,方法的灵敏度愈高

ε > 1*10⁴ 强吸收

ε = 10³~10⁴ 较强吸收

ε = 10²~10³中吸收

ε < 10²弱吸收

紫外可见吸收光谱紫外光谱常见问题

  • 原子吸收光谱仪的原理是什么?

    仪器从光源辐射出具有待测元素特征谱线的光,通过试样蒸气时被蒸气中待测元素基态原子所吸收,由辐射特征谱线光被减弱的程度来测定试样中待测元素的含量。

  • 荧光光谱仪和紫外可见分光光度计的区别?

    紫外分光光度计测的是分子在紫外光区的吸收强度,荧光分光光度计测的是吸收光能量后处于激发态的分子发出的辐射(即分子荧光)。

  • 怎么用光纤探头为光谱仪收集光谱

    光纤探头就比较简单了,直接接到光谱仪上,一般的光纤探头一端接激发光,一端接光谱仪,然后将光纤探头对准被测物就可以了,被测物一般放在光纤探针输出端的焦点位置上,这样光谱仪就可以需要的光谱了

紫外可见吸收光谱性质

1. 同一浓度的待测溶液对不同波长的光有不同的吸光度;

2. 对于同一待测溶液,浓度愈大,吸光度也愈大;

3. 对于同一物质,不论浓度大小如何,最大吸收峰所对应的波长(最大吸收波长 λmax) 相同,并且曲线的形状也完全相同。

1. 吸收峰的形状及所在位置

--定性、定结构的依据

2. 吸收峰的强度--定量的依据

A = lg(1/T)=κCL

T:透射率

k:摩尔吸收系数,单位:L·cm⁻¹·mol⁻¹

C:浓度

L:光程长

紫外可见光谱的两个重要特征

波峰:λmax, κ

例:λmaxEt = 279 nm (κ=5012,logk=3.7)

简介

在有机化合物分子中有形成单键的σ电子、有形成双键的π电子、有未成键的孤对n电子。当分子吸收一定能量的辐射能时,这些电子就会跃迁到较高的能级,此时电子所占的轨道称为反键轨道,而这种电子跃迁同内部的结构有密切的关系。

在紫外吸收光谱中,电子的跃迁有σ→σ*、n→σ*、π→π*和n→π*四种类型,

各种跃迁类型所需要的能量依下列次序减小: σ→σ*>n→σ*>π→π*>n→π*

跃迁类型

吸收带 λmax/nm特征典型基团 εmax

σ→σ* 远紫外区

150 远紫外区测定

C-C、C-H(在紫外光区观测不到)

n→σ* 端吸收

150 ~ 230 紫外区短波长端至远紫外区的强吸收

-OH、-NH₂ 、-X、-S

π→π* E1 带

&lt; 190 芳香环的双键吸收

(-C=C-C=C-)n &gt;200

K(E2) 带

&lt; 217 共轭多烯、-C=C-C=O-等的吸收

&gt;10,000

n→π* R 带

200~400 含CO,NO 2 等n电子基团的吸收

C=O、C=S、-N=O、-N=N-、C=N &lt;100

由于一般紫外可见分光光度计只能提供190~850nm范围的单色光,因此,我们只能测量n→σ*的跃迁,n→π*跃迁和部分π→π*跃迁的吸收,而对只能产生200nm以下吸收的σ→σ*的跃迁则无法测量。

紫外吸收光谱是带状光谱,分子中存在一些吸收带已被确认,其中有K带、R带、B带、E1和 E2带等。

K带是二个或二个以上π键共轭时,π电子向π * 反键轨道跃迁的结果,可简单表示为π→π * 。

R带是与双键相连接的杂原子(例如C=O、C=N、S=O等)上未成键电子的孤对电子向π * 反键轨道跃迁的结果,可简单表示为 n→π * 。

E1 带和E2 带是苯环上三个双键共轭体系中的π电子向π*反键轨道跃迁的结果,可简单表示为 π→π * 。

B带也是苯环上三个双键共轭体系中的π→π * 跃迁和苯环的振动相重叠引起的,但相对来说,该吸收带强度较弱。

以上各吸收带相对的波长位置由大到小的次序为:R、B、K、E2、 E1 ,但一般K和E带常合并成一个吸收带。

与可见光吸收光谱一样,在紫外吸收光谱分析中,在选定的波长下,吸光度与物质浓度的关系,也可用光的吸收定律即朗伯-比尔定律来描述:

A= lg (Io /I) =ε bc

其中A为溶液吸光度,Io为入射光强度,I为透射光强度,ε为该溶液摩尔吸光系数,b为溶液厚度,c为溶液浓度。

吸收与色散是相互依赖的,这是一种普遍的物理规律。有吸收就有色散,远离共振的低频区,吸收弱,则是正常色散;在共振区,有强烈吸收,表现为反常色散。经典电子论解释了色散与吸收的规律,定性地与实验结果一致。但是,定量的关系应当建立在量子论的基础之上。

紫外吸收光谱有多种表示方法,图形随表示方法不同而异。有以logε作纵坐标,波长为横坐标;有横坐标为波数和频率;有以波长作横坐标,纵坐标分别为摩尔消光系数ε,吸光度和百分透光率的。

自动分析仪描绘的曲线其纵坐标为投射比T或吸光度A,此曲线高度随溶液浓度而变,适用于定量分析。

在有机化学中,常用摩尔吸光系数ε值或logε作图。用logε作图能使强吸收带和弱吸收带表示在同一图中,但有时也不能建到以ε作图时所表现的细微结构。ε或logε均需从吸光度、浓度和分子量等数值计算而得。

横坐标用波数表示时,对一具有几个吸收带的复杂光谱,其吸收带在横坐标上的分布较均匀。相对的,酮以幅度以波长作图与用波数时相比,压缩了低波长吸收带的宽度,而使高波长吸收带相应拉宽。因此,对一复杂、范围宽的光谱及作理论研究的光谱则横坐标用波数比用波长更适宜。惯用的波长图正逐渐为波数所取代。作图时,对波数来说,更合理的应由左边向右边递增,但由于保持与惯用的波长作图相应,低波数长标于右边。

紫外可见吸收光谱紫外光谱文献

大青叶与伪品的紫外光谱鉴别 大青叶与伪品的紫外光谱鉴别

格式:pdf

大小:91KB

页数: 1页

评分: 4.4

目的:建立大青叶和伪品的紫外光谱鉴别方法。方法:样品打粉后乙醇超声提取,得测试液后扫描紫外光谱图。结果:大青叶正品和伪品的紫外光谱最大吸收峰有明显不同。结论:紫外光谱可有效鉴别大青叶正品和伪品。

立即下载
大青叶与伪品的紫外光谱鉴别 大青叶与伪品的紫外光谱鉴别

格式:pdf

大小:91KB

页数: 1页

评分: 4.4

目的:建立大青叶和伪品的紫外光谱鉴别方法。方法:样品打粉后乙醇超声提取,得测试液后扫描紫外光谱图。结果:大青叶正品和伪品的紫外光谱最大吸收峰有明显不同。结论:紫外光谱可有效鉴别大青叶正品和伪品。

立即下载

1、紫外可见吸收光谱所对应的电磁波长较短,能量大,它反映了分子中价电子能级跃迁情况。主要应用于共轭体系(共轭烯烃和不饱和羰基化合物)及芳香族化合物的分析。

2、由于电子能级改变的同时,往往伴随有振动能级的跃迁,所以电子光谱图比较简单,但峰形较宽。一般来说,利用紫外吸收光谱进行定性分析信号较少。

3、紫外可见吸收光谱常用于共轭体系的定量分析,灵敏度高,检出限低。

分子的紫外可见吸收光谱法是基于分子内电子跃迁产生的吸收光谱进行分析的一种常用的光谱分析法。分子在紫外-可见区的吸收与其电子结构紧密相关。紫外光谱的研究对象大多是具有共轭双键结构的分子。如,胆甾酮(a)与异亚丙基丙酮(b)分子结构差异很大,但两者具有相似的紫外吸收峰。两分子中相同的O=C-C=C共轭结构是产生紫外吸收的关键基团。

紫外-可见以及近红外光谱区域的详细划分如图4.4所示。紫外-可见光区一般用波长(nm)表示。其研究对象大多在200-380 nm的近紫外光区和/或380-780 nm的可见光区有吸收。紫外-可见吸收测定的灵敏度取决于产生光吸收分子的摩尔吸光系数。该法仪器设备简单,应用十分广泛。如医院的常规化验中,95%的定量分析都用紫外-可见分光光度法。在化学研究中,如平衡常数的测定、求算主-客体结合常数等都离不开紫外-可见吸收光谱。

紫外可见吸收光谱法总述

物质的紫外吸收光谱基本上是其分子中生色团及助色团的特征,而不是整个分子的特征。如果物质组成的变化不影响生色团和助色团,就不会显著地影响其吸收光谱,如甲苯和乙苯具有相同的紫外吸收光谱。另外,外界因素如溶剂的改变也会影响吸收光谱,在极性溶剂中某些化合物吸收光谱的精细结构会消失,成为一个宽带。所以,只根据紫外光谱是不能完全确定物质的分子结构,还必须与红外吸收光谱、核磁共振波谱、质谱以及其他化学、物理方法共同配合才能得出可靠的结论。

紫外可见吸收光谱法化合物的鉴定

利用紫外光谱可以推导有机化合物的分子骨架中是否含有共轭结构体系,如C=C-C=C、C=C-C=O、苯环等。利用紫外光谱鉴定有机化合物远不如利用红外光谱有效,因为很多化合物在紫外没有吸收或者只有微弱的吸收,并且紫外光谱一般比较简单,特征性不强。利用紫外光谱可以用来检验一些具有大的共轭体系或发色官能团的化合物,可以作为其他鉴定方法的补充。

(1)如果一个化合物在紫外区是透明的,则说明分子中不存在共轭体系,不含有醛基、酮基或溴和碘。可能是脂肪族碳氢化合物、胺、腈、醇等不含双键或环状共轭体系的化合物。

(2)如果在210~250nm有强吸收,表示有K吸收带,则可能含有两个双键的共轭体系,如共轭二烯或α,β-不饱和酮等。同样在260,300,330nm处有高强度K吸收带,在表示有三个、四个和五个共轭体系存在。

(3)如果在260~300nm有中强吸收(ε=200~1 000),则表示有B带吸收,体系中可能有苯环存在。如果苯环上有共轭的生色基团存在时,则ε可以大于10 000。

(4)如果在250~300nm有弱吸收带(R吸收带),则可能含有简单的非共轭并含有n电子的生色基团,如羰基等。

紫外可见吸收光谱法纯度检查

如果有机化合物在紫外可见光区没有明显的吸收峰,而杂质在紫外区有较强的吸收,则可利用紫外光谱检验化合物的纯度。对于异构体的确定,可以通过经验规则计算出λmax值,与实测值比较,即可证实化合物是哪种异构体。如: 乙酰乙酸乙酯的酮-烯醇式互变异构

紫外可见吸收光谱法位阻作用的测定

由于位阻作用会影响共轭体系的共平面性质,当组成共轭体系的生色基团近似处于同一平面,两个生色基团具有较大的共振作用时,λmax不改变,εmax略为降低,空间位阻作用较小;当两个生色基团具有部分共振作用,两共振体系部分偏离共平面时,λmax和εmax略有降低;当连接两生色基团的单键或双键被扭曲得很厉害,以致两生色基团基本未共轭,或具有极小共振作用或无共振作用,剧烈影响其UV光谱特征时,情况较为复杂化。在多数情况下,该化合物的紫外光谱特征近似等于它所含孤立生色基团光谱的“加合”。

紫外可见吸收光谱法氢键强度的测定

溶剂分子与溶质分子缔合生成氢键时,对溶质分子的UV光谱有较大的影响。对于羰基化合物,根据在极性溶剂和非极性溶剂中R带的差别,可以近似测定氢键的强度。溶剂分子与溶质分子缔合生成氢键时,对溶质分子的UV光谱有较大的影响。对于羰基化合物,根据在极性溶剂和非极性溶剂中R带的差别,可以近似测定氢键的强度。

紫外可见吸收光谱法定量分析

朗伯-比尔定律是紫外-可见吸收光谱法进行定量分析的理论基础,它的数学表达式为: A = ε b c

紫外可见吸收光谱相关推荐
  • 相关百科
  • 相关知识
  • 相关专栏