超高、大长细比的自立式薄壁钢管结构往往具有结构柔、质量轻、阻尼小等特点,对风荷载极其敏感,由风荷载导致的损伤乃至倒塌的屡见不鲜,因此本报告围绕此类结构的风灾评估方法与减振控制技术展开研究。首先,发展了用于自立式薄壁钢管结构风荷载模拟的改进谐波叠加法,开展了自立式薄壁钢管结构顺、横风向的风振响应分析;以此为基础,结合横风振动分析的升力振子法,构建了结构顺-横风向耦合风振动力学模型。随后,建立了风力发电机塔架多尺度有限元模型,基于等效结构应力法和热点应力法,结合Miner线性损伤累积准则,考虑风速、风向分布,开展了风力发电塔架节点焊接细节处的应力分布与疲劳寿命评估。提出了一体式孔隙耗能环形调谐质量阻尼器、环形TLD/TLCD和环形曲率相关形状记忆合金阻尼减振装置等减振器,并建立了其力学模型。最后,建立了结构减振体系动力方程,开展了自立式薄壁钢管结构TMD、TLD和TLCD减振试验,以此为基础构建了自立式薄壁钢管结构统一设计方法和多目标优化设计方法。研究结果表明,与实测数据和试验结果的对比表明,本项目所建立的风振响应及减振控制分析方法和分析程序具有一定的精度,能够用于自立式薄壁钢管结构的风灾评估与减振设计;试验模型的阻尼比为0.0134,安装TMD后结构等效阻尼比可达0.034,安装TLD后结构等效阻尼比超过0.040,而安装TLCD时结构等效阻尼比的均值仅为0.0267,安装减振器后结构风振响应能够有效衰减。 2100433B
自立式薄壁钢管结构由于其轻质、高强、高效等优点而广泛应用于高耸基础设施。由于对其风致疲劳损伤缺乏准确的评估方法和有效的控制手段,使得该类结构由于端板法兰连接节点疲劳损伤而引发的倒塌事故时有发生。基于此,本项目的研究内容主要包括:(1)建立自立式薄壁钢管结构顺-横风向耦合振动模型,揭示良态风和飓风环境下结构风振响应机理;(2)借助常规疲劳试验数据和应力转换系数,构建等效结构应力S-N曲线,建立自立式薄壁钢管结构风致应力分析的多尺度有限元模型,进而形成基于等效结构应力的多尺度疲劳评估方法;(3)提出适用于自立式薄壁钢管结构的质量内置一体式调谐质量阻尼器(TMD),进而建立相应的风振控制分析理论,最终形成基于疲劳性能的TMD控制一体化设计理论与方法。研究结果可为该类结构的疲劳评估和减振设计提供理论参考。
电气配管中的薄壁钢管,套电线管(或镀锌电线管)的定额子目,不可以套焊接钢管的定额子目。 如果没有电线管(或镀锌电线管)子目,可以参照焊接规格的子目,但电线管价格比焊接规格低。
套用紧宁管道定额子目 如果当地无紧宁管道定额子目 套用电线管定额子目
据我所知,薄壁钢管规格表如下: 镀锌矩形管 Q235B/.0-12; 方矩管 Q235/Q345; 无缝矩形管 &nb...
1000kV变电构架属于风敏感结构,风荷载是设计的主要控制荷载。该文以某一大型薄壁钢管构架为工程背景,结合多阶模态力法和模态解耦原理,提出了多模态显式积分法,并推导了结构风致响应与风振系数的计算公式。在时域内得到了结构的风致振动响应时程,研究了结构位移平均值、位移均方根值和加速度均方根值的分布特点,同时计算比较了不同风向角时构架结构典型节点的荷载风振系数和位移风振系数。通过研究,揭示了1000kV大型变电构架的风致振动特性,为构架结构的抗风设计提供了依据。
电气薄壁钢管( JDG管)施工方案 一、施工准备 1、材料准备: 所用主材、附材已运至施工现场, 规格、型号符合图纸要求, 数量满足现场 需要。材料要求如下: 1)主材:钢管具备有效的产品合格证,原材合格证,镀锌管外表层完整、 无剥落现象。 2) 附材:灯头盒、接线盒、开关盒、插座盒、直管接头、螺纹管接头、护 口、管卡、园钢、扁钢、角钢、防锈漆等具有合格证,螺栓、螺母、垫圈为镀锌 件,镀锌层完整无缺。 2、作业条件: 1) 暗管敷设: A、 各层水平线和墙厚度线弹好,配合土建施工; B、现浇楼板内配管,底层钢筋绑扎完毕,上层钢筋未绑扎前; C、现浇墙体内配管,土建钢筋已绑扎完毕,按墙体线施工; D、砌体内配管随土建施工进行配管; 2)明管敷设: A、土建粗装修抹灰完毕; B、 土建内装修墙面油漆或涂料施工完毕; 3) 吊顶内管路敷设: A、土建内装修房间或走道标高已确定并弹在墙上; B、
所谓结构疲劳损伤,是指由于重复荷载作用而引起的结构材料性能衰减的过程,也就是通常所说的疲劳裂纹的发生、发展、形成宏观裂纹、发生破坏的全过程。疲劳损伤与普通损伤的最大区别在于随着荷载循环次数的增加,疲劳中的损伤存在一个累积的过程。
有关复合材料的疲劳损伤模型大致可以分为三类:第一类模型不考虑实际的性能劣化机理,使用S-N 曲线或类似的图,提供若干疲劳破坏准则;第二类是剩余刚度或剩余强度的表象模型;第三类是损伤发展模型,使用一个或多个可测的能衡量损伤情况的变量。2100433B
《在役桥梁结构疲劳监测与评估》介绍了作者十多年来在大型桥梁结构疲劳状态监测与评估方法领域的主要研究成果及其在重要桥梁工程中的应用,包括桥梁结构疲劳应力场的监测与分析方法,基于监测信息的桥梁结构疲劳状态分析理论及其实施方法。重点介绍了在桥梁结构疲劳分析与评估过程中的关键理论与方法,包括钢桥梁在服役荷载下的高周疲劳损伤力学理论、基于监测信息的桥梁疲劳状态评估的确定性方法、以疲劳状态评估为目标的大型桥梁结构多尺度有限元模拟、基于桥梁交通荷载测量系统的活载模型的建立、在役桥梁结构的关键疲劳构件识别与疲劳累积过程仿真分析方法、在役桥梁结构疲劳寿命可靠性评估方法,以及在役桥梁结构基于监测、数值分析、人工检测等多方面信息进行疲劳状态综合评估的方法。同时介绍了上述理论和方法在青马大桥、润扬大桥、苏通大桥等重大桥梁工程中的应用,包括监测与评估方法实施过程中所需的相关软件。
《在役桥梁结构疲劳监测与评估》可以作为力学,土木,交通相关专业研究的参考读物,也可供相关领域科研人员。桥梁运营管理和设计的技术人员在其研究和工作中参考。