制冷剂R134a,主要作为R12的环保替代品,广泛用于汽车空调、冰箱、中央空调、商业制冷等制冷空调系统。
中文名称 | 制冷剂R134a | 别称 | 四氟乙烷(R134a) |
---|---|---|---|
化学式 | CH 2 FCF 3 | 分子量 | 102.03 |
沸点 | -26.26℃ | 密度 | 0.512g/cm3 |
凝固点 | -96.6°C | 临界温度 | 101.1 ℃ |
临界压力 | 4067kpa | 饱和液体密度 | 25℃ , 1.207g/cm 3 |
液体比热 | 25℃ , 1.51KJ/(Kg·℃) | 溶解度 | ( 水中, 25℃ ) 0.15% |
主要作为R12的环保替代品,广泛用于汽车空调、冰箱、中央空调、商业制冷等制冷空调系统;还可作为医药、农药、化妆品、清洗等产品的气雾推进剂、阻燃剂以及发泡剂。此外,R134a也是一些共沸混合制冷剂(如R404A等)的配制原料
固特威汽车空调氟利昂雪种冷媒r134a制冷剂,价格是35元;立道(latop) 冷媒R134a 环保雪种 无氟利昂 ...
380元一瓶
高压约1.2~1.4MPa;低压约0.3~0.4MPa。
汽车空调制冷剂R134a代替R12的研究——通过对R134a与R12两种制冷剂性质的对比,分析了R134a代替R12后对空调系统产生的影响以及系统作出的相应改变,指出R134a具有作为汽车空调制冷剂应具备的各种热工性能、安全性和环境性能等条件,总结出R134a代替R12的可行性...
目前,汽车空调系统所采用的制冷剂R12由于对大气中臭氧层的破坏以及造成温室效应,已被国际上列为禁用的CFC物质(国际上规定1996年1月1日起禁用R12),因此,相应的替代制冷剂及替代技术的研究,已迫在眉睫。而R134a是R12众多替代制冷剂中最理想的一种,但由于R134a制冷剂不能直接充入原R12汽车空调系统,因此,需要对原系统进行改进。
发文时使用的制冷剂已达70~80种,并正在不断发展增多。但用于食品工业和空调制冷的仅十多种。其中被广泛采用的只有以下几种:
(代号:R717)
氨是使用最为广泛的一种中压中温制冷剂。氨的凝固温度为-77.7℃,标准蒸发温度为-33.3℃,在常温下冷凝压力一般为1.1~1.3MPa,即使当夏季冷却水温高达30℃时也绝不可能超过1.5MPa。氨的单位标准容积制冷量大约为520kcal/m3。
氨有很好的吸水性,即使在低温下水也不会从氨液中析出而冻结,故系统内不会发生“冰塞”现象。氨对钢铁不起腐蚀作用,但氨液中含有水分后,对铜及铜合金有腐蚀作用,且使蒸发温度稍许提高。因此,氨制冷装置中不能使用铜及铜合金材料,并规定氨中含水量不应超过0.2%。
氨的临界温度较高(tkr=132℃),汽化潜热大,在大气压力下为1164KJ/Kg,标准工况下的单位容积制冷量也大,氨压缩机尺寸可以较小。
纯氨对润滑油无不良影响,但有水分时,会降低冷冻油的润滑作用。氨在润滑油中不易溶解,故要在装置中设置油分离器,减少润滑油进入冷凝器和蒸发器,防止热交换表面被油污染后传热性能降低。
纯氨对钢铁无腐蚀作用,但当氨中含有水分时将腐蚀铜和铜合金(磷青铜除外),故在氨制冷系统中对管道及阀件均不采用铜和铜合金。
液氨透明无色,氨蒸气无色,有强烈的刺激臭味。氨对人体有较大的毒性,当氨液飞溅到皮肤上时会引起冻伤。当空气中氨蒸气的容积达到0.5-0.6%时可引起爆炸。故机房内空气中氨的浓度不得超过0.02mg/L。
氨在常温下不易燃烧,加热至350℃时,分解为氮和氢气,氢气与空气中的氧气混合后会发生爆炸。与空气混合的体积分数在11%-14%时即可燃烧。在16%-25%时遇明火可能爆炸。在0.5%-0.6%时,人在其中停留半小时就会中毒。
氨极溶于水,0℃时每升水能溶解130升氨气。一般规定液氨中含水量低于0.2%。
氨的比重和粘度小,放热系数高,价格便宜,易于获得。但是,氨有较强的毒性和可燃性。若以容积计,当空气中氨的含量达到0.5%~0.6%时,人在其中停留半个小时即可中毒,达到11%~13%时即可点燃,达到16%时遇明火就会爆炸。因此,氨制冷机房必须注意通风排气,并需经常排除系统中的空气及其它不凝性气体。
总上所述,氨作为制冷剂的优点是:易于获得、价格低廉、压力适中、单位制冷量大、放热系数高、几乎不溶解于油、流动阻力小,泄漏时易发现。其缺点是:有刺激性臭味、有毒、可以燃烧和爆炸,对铜及铜合金有腐蚀作用。
(代号:R12)
R12为烷烃的卤代物,学名二氟二氯甲烷,分子式为CF2Cl2。它是我国中小型制冷装置中使用较为广泛的中压中温制冷剂。R12的标准蒸发温度为-29.8℃,冷凝压力一般为0.78~0.98MPa,凝固温度为-155℃,单位容积标准制冷量约为288kcal/m3。
R12是一种无色、透明、没有气味,几乎无毒性、不燃烧、不爆炸,很安全的制冷剂。只有在空气中容积浓度超过80%时才会使人窒息。但与明火接触或温度达400℃以上时,则分解出对人体有害的气体。
R12能与任意比例的润滑油互溶且能溶解各种有机物,但其吸水性极弱。因此,在小型氟利昂制冷装置中不设分油器,而装设干燥器。同时规定R12中含水量不得大于0.0025%,系统中不能用一般天然橡胶作密封垫片,而应采用丁腈橡胶或氯乙醇等人造橡胶。否则,会造成密封垫片的膨胀引起制冷剂的泄漏。
(代号:R22)
R22也是烷烃的卤代物,学名二氟一氯甲烷,分子式为CHClF2,标准蒸发温度约为-41℃,凝固温度约为-160℃,冷凝压力同氨相似,单位容积标准制冷量约为454kcal/m3。
R22的许多性质与R12相似,但化学稳定性不如R12,毒性也比R12稍大。但是,R22的单位容积制冷量却比R12大的多,接近于氨。当要求-40~-70℃的低温时,利用R22比R12适宜,故发文时R22被广泛应用于-40~-60℃的双级压缩或空调制冷系统中。
(代号:R134a)
分子式 : CH 2 FCF 3 (四氟乙烷) ,分子量:102.03
沸点 :-26.26℃ , 凝固点 :-96.6°C ,临界温度 :101.1 ℃ ,临界压力:4067kpa
饱和液体密度 :25℃ , 1.207g/cm 3 ,液体比热 :25℃ , 1.51KJ/(Kg·℃)
溶解度( 水中, 25℃ ) :0.15% ,临界密度 :0.512g/cm3
破坏臭氧潜能值( ODP ) :0 , 全球变暖系数值( GWP ) :0.29
沸点下蒸发潜能 :215 kJ/kg
质量指标 : 纯度 ≥ 99.9 % ,水份PPm≤ 0.0010,酸度 PPm≤ 0.00001 ,蒸发残留物PPm≤ 0.01
R134a作为R12的替代制冷剂,它的许多特性与R12很相像。
R134a的毒性非常低,在空气中不可燃,安全类别为A1,是很安全的制冷剂。
R134a的化学稳定性很好,然而由于它的溶水性比R22高,所以对制冷系统不利,即使有少量水分存在,在润滑油等的作用下,将会产生酸、二氧化碳或一氧化碳,将对金属产生腐蚀作用,或产生“镀铜”作用,所以R134a对系统的干燥和清洁要求更高。R134a对钢、铁、铜、铝等金属未发现有相互化学反应的现象,仅对锌有轻微的作用。
R134a 是发文时国际公认的替代 CFC-12 的主要制冷工质之一,常用于车用空调,商业和工业用制冷系统,以及作为发泡剂用于硬塑料保温材料生产,也可以用来配置其他混合致冷剂,如 R 404a 和 R 407c 等。
物化特性:R404A是一种不含氯的非共沸混合制冷剂,常温常压下为无色气体,贮存在钢瓶内是被压缩的液化气体。其 ODP 为 0 ,因此R404A是不破坏大气臭氧层的环保制冷剂。主要用途:R404A 主要用于替代 R22 和 R502 ,具有清洁、低毒、不燃、制冷效果好等特点,大量用于中低温冷冻系统。
物化特性:常温常压下, R410A 是一种不含氯的氟代烷非共沸混合制冷剂,无色气体,贮存在钢瓶内是被压缩的液化气体。其 ODP 为 0 ,因此R410A是不破坏大气臭氧层的环保制冷剂。
主要用途:大量用于家用空调、小型商用空调、户式中央空调等。
发文时尚不公开配方,用在复叠式制冷机中,在空气冷凝的前提下,蒸发温度可以达到-150度左右
主要是节能和环保这两大优点;节能方面:用R433b的空调要比用R134,R22的空调节省能耗15%至35%左右。环保方面:碳氢制冷剂属于天然工质,因此对大气无污染、对臭氧层无破坏和温室效应几乎为零。
1.按成分有以下几种。
(1) 无机化合物。水、氨、二氧化碳等。
(2) 饱和碳氢化合物的衍生物,俗称氟利昂。主要是甲烷和乙烷的衍生物。如R12, R22, R134a等。
(3) 饱合碳氢化合物。如丙烷,异丁烷等
(4) 不饱和碳氢化合物。如乙烯,丙烯等。
(5) 共沸混合制冷剂。如R502等。
(6) 非共沸混合制冷剂。如R407c,R410等。
通常按照制冷剂的标准蒸发温度,又分为高、中、低温三类。标准蒸发温度是指标准大气压力下的蒸发温度,也就是沸点。
(1) 高温(低压):标准蒸发温度(tS)>0℃,冷凝压力(PC)≦0.2~0.3Mpa,常用的R123等。
(2) 中温(中压):0℃> tS>-60℃,0.3Mpa< PC<2.0 Mpa,常用的有氨,R12, R22, R134a,丙烷等。
(3) 低温(高压):tS≦-60℃,常用的有R13,乙烯, R744(CO2)等。
2.编号,命各标示方法;
按照国际统一规定用字母“R”代表制冷剂,加上后面的数字和字母组成在GB7778-1987中做了明确规定。简述如下:
(1) 无机化合物。
规定为R700加上无机化合物的相对分子质量的整数部分组成
NH3(氨) H2O(水) CO2(二氧化碳)
分子量 17 18 44
编号 R717 R718 R744
(2)氟利昂和烷氢类:
烷氢类化合物的分子通式:CmH2m 2
氟利昂是饱合碳氢化合物(烷族)的卤族元素衍生物的总称,分子通式为R(m-1)(n 1)(X),若有Br(溴)原子,再加字母B和原子数,若(m-1)=0,则“0”略去不写。
下面列举几种编号
名称 分子式 m,n,x,z值 编号
一氯二氟甲烷 CHF2Cl m=1,n=1,x=2,z=0 R22
二氯三氟乙烷 C2HF3 Cl2 m=2,n=1,x=3,z=0 R123
三氟一溴甲烷 CF3Br m=1,n=0,x=3,z=1 R13B1
丙烷 C3H8 m=3,n=8,x=0,z=0 R290
(3)混合制冷剂。
混合制冷剂以获取命名的顺序编号的
共沸混合制冷剂编号为R5,从R500开始R501,R502等。
非共沸混合制冷剂编号为R4,从R401,R404,R410等。
同素异构体加注小写数字母,如CHF2-CHF2 R134,CF3-CH2F R134a
3. 常用制冷剂性质
(1) 氨:标准蒸发温度为-33.4℃,凝固温度为-77.7℃,压力适中,单位容积制冷量大,流动阻力小,热导率大。价格低廉对大气臭氧层无破坏作用,故被广泛应用在蒸发温度-65℃以上的大中型制冷机中。
缺点是毒性较大,可燃,可爆,有强烈刺激性臭味,等熵指数较大,对锌铜有腐蚀作用。
(2) 氟利昂:重点分析热水器发文时常用的
1)R22:对大气臭氧层有轻微破坏作用,并产生温室效应,被列为第二批限用禁用的制冷剂。我国将在2040年1月1日起禁止生产和使用。
R22是应用最广泛的中温制冷剂,沸点-40.8℃,凝固点-160℃,无色,气味弱,不燃烧,不爆炸,属安全制冷剂。它与润滑油部分互溶,需采取回油措施。
2)R142b.沸点较高-9.25℃.凝固点-130.8℃最大特点是在很高的冷凝温度下,冷凝压力并不高。如80℃时只有1.35 Mpa,因此它适合在热泵装置和高环境温度下使用。
对大气臭氧层有微弱的破坏作用,也将在2040年禁用。
3)R134a。沸点-26.5℃,凝固点-101℃,无色,无味,不燃,不爆,
但与矿物性润滑油不相溶,必须采用聚脂类合成油(如聚烯烃乙二醇),与丁腈橡胶不相溶,故密封件须改为聚丁腈橡胶,吸水性较强,易与水反映生成酸,腐蚀管络及压缩机,对系统干燥度要求更高,系统中的干燥剂要换成XH-7或XH-9分子筛。压缩机电机线圈绝缘材料必须加强绝缘等级,是一种不太成熟的制冷剂。
4)发文时认为较有前途的R22潜代品为R407c和R410A。
R407c是R32R125 R134a 以23:25:52的质量百分比组成的三元非共沸制冷剂,蒸发压力和制冷压力与R22非常接近。但在制热工况下单位容积制冷量和COP都小于R22。在相同设计运行能力的热泵热水系统中,采用R407c热水加热系统耗功明显高于R22系统。使得在高水温时COP低于R22系统。
R410A是R32和R125按照50:50的质量百分比组成的近共沸混合制冷剂。其温度滑移不超过0.2℃,这给制冷剂充灌,设备更换提供了方便。但是R410A制热工况下的COP 比R22约小9%,其蒸发压力,冷凝压力以及容积制冷量都比R22大的多,同温度下它的压力值比R22约高60%,传热性能及流动性较好。不能直接用于R22系统。必须重新设计压缩机,换热器,管路和系统。
5)C02制冷剂
绿色环保天然工质C02以其无毒,对臭氧层无影响,不产生温室效应和良好的热力学性质等优点,再度受到人们的重视。此外,C02给临界环境系统所具有的较高的排气温度和气体冷却器较大的温度滑移。它在热泵热水器领域具有其他工质无法比拟的优势。
主要优势:
① 无毒,不可燃。具有很好的安全性。消耗臭氧潜能值ODP=0,全球变暖潜能值GWP=1,有着良好的的经济性,而不存在回收问题,具有环境友好性。
② 物理化学性能稳定。与润滑油共溶性良好。粘度很低,这样可以提高流速,压降不会太大,改善传热,进一步减小部件尺寸和系统重量。
③ 绝缘指数(K)值较高,虽有使压缩机排气温度偏高的问题,但符合制取较高温度热水的要求。同时,由于C02低于工作压力P0很高,压缩机压缩比相对其他系统低的多,压缩机效率高。
④ C02分子量比高分子化合物的小得多,因此相对于一定的蒸发温度,它的蒸发(汽化)潜热比较大,此外,高的工作压力,使压缩机吸气比容较小,单位容积制冷量较大,可以减少尺寸,使系统结构紧凑。
⑤ C02低的临界温度,使其在热泵系统循环中处于跨临界状态。在放热过程中较大的温度滑移,可以和变温热源较好的匹配。
C02应用研究的一个重要领域是热泵热水器(HPWH)。C02跨临界循环中气体冷却器所具有的较高的排气温度,较大的温度滑移和冷却介质的温升过程相匹配,使其在热泵循环方面具有独特的优势。
通过调整循环的排气压力,可使气体冷却器的排热过程较好适应外部热源的温度和温升需要。研究结果表明,当用环境空气作热源,0℃环境进水温度8℃,热水出水温度为60℃时,该系统COP值高达4.3.一个更大优点是毫无困难的产出90℃的热水COP值仍较高。而普通的热泵热水器限制产水温度在55℃以下。
因而C02热泵系统可较好的满足采暖,空调和生活热水的加热要求。C02作为制冷工质在热泵中的应用将有效的解决空调冷热源面临的资源与环境压力,应用前景良好。
R407C,R410A,R22的一般性质和理论循环的比较表 |
|||
参数 |
R407C |
R410A |
R22 |
成分 |
HFC32/125/134a |
HFC32/125 |
HcFC22 |
质量混合比例 |
23/25/52 |
50/50 |
100 |
相对分子量 |
86.2 |
72.59 |
86.48 |
标准沸点℃ |
-43.77 |
-51.56 |
-40.76 |
凝固点℃ |
-115 |
-160 |
|
临界温度℃ |
86.08 |
70.22 |
96 |
临界压力Mpa |
4.653 |
4.852 |
4.974 |
临界密度Kg/m^3 |
506 |
547.5 |
525 |
饱和液体密度Kg/m^3 |
1137.6 |
1060.2 |
1191 |
饱和蒸汽密度Kg/m^3 |
51.374 |
65.97 |
44.44 |
粘度(饱和液体)mPa.s |
0.164 |
0.178 |
0.178 |
粘度(饱和汽体)mPa.s |
0.0128 |
0.0132 |
0.0128 |
比热容(饱和液体) KJ/(Kg.K) |
1.53 |
1.692 |
1.256 |
比热容(饱和汽体) KJ/(Kg.K) |
1.143 |
1.306 |
0.662 |
蒸发潜热KJ/Kg |
185.11 |
186.85 |
233.5 |
导热系数(饱和液体) W/(m.K) |
0.0863 |
0.081 |
0.0869 |
导热系数(饱和汽体) W/(m.K) |
0.0131 |
0.0128 |
0.0113 |
ODP |
0 |
0 |
0.0113 |
GWP |
1500 |
1700 |
1700 |
理论循环数据 |
|||
蒸发压力Kpa |
499 |
804 |
498 |
冷凝压力Kpa |
2112 |
3061 |
1943 |
温度滑移 |
4.3 |
0.07 |
0 |
排气温度 |
67.4 |
72.5 |
70.3 |
制冷COP |
3.94 |
3.69 |
4.14 |
容积制冷量KJ/m^3 |
2947 |
4190 |
3010 |
制热COP |
5.03 |
4.69 |
5.14 |
容积制热量KJ/m^3 |
3762 |
5326 |
3737 |
设计与生产工艺的对比 |
|||
R22 |
R407C |
R410A |
|
压缩机 |
专用压缩机 润滑油更换为POE,PVE |
同407C |
|
冷凝器 |
·系统设计压力增大到3.3Mpa, 对铜管压力重新校核 ·增大换热面积,加大风扇,降低冷凝温度 ·增对温度滑移,采用介质与空气逆向流动 |
当冷凝压力增大60%,系统耐压增加到4.15Mpa,相应采用直径8mm,7mm铜管 |
|
蒸发器 |
·铜管耐压重新校核 ·通过改变换热器结构,流动提 高换热系数 |
铜管的耐压重新校核 |
|
节流装置 |
·采用膨胀阀, ·节流毛细管加工精度提高,直径加大 |
·节流装置的耐压重新校核 ·采用膨胀阀,节流毛细管加工精度提高,直径加大 |
|
四通阀 |
专用 |
专用 |
|
铜管 |
系统耐压提高10% 提高壁厚 |
铜管耐压重新校核 厚度提高到0.7mm以上 |
|
干燥过滤器 |
HFC32的分子直径小,采用分子筛XH-10C,11C过滤器 |
同407C |
|
高分子材料 |
CR 合 成橡胶 |
HNBR 合成橡胶 |
|
两器加工 |
残留水分,杂质减少 加工设备改用POE挥发油 |
残留水分,杂质减少 加工设备改用POE挥发油 |
|
焊接工艺 |
采用氯离子助焊剂 |
采用氯离子助焊剂 |
按成分有以下几种。
(1)无机化合物。水、氨、二氧化碳等。
(2)饱和碳氢化合物的衍生物,俗称氟利昂。主要是甲烷和乙烷的衍生物。如R12,R22,R134a等。
(3)饱合碳氢化合物。如丙烷,异丁烷等
(4)不饱和碳氢化合物。如乙烯,丙烯等。
(5)共沸混合制冷剂。如R502等。
(6)非共沸混合制冷剂。如R407c,R410等。
通常按照制冷剂的标准蒸发温度,又分为高、中、低温三类。标准蒸发温度是指标准大气压力下的蒸发温度,也就是沸点。
(1)高温(低压):标准蒸发温度(tS)>0℃,冷凝压力(PC)≦0.2~0.3Mpa,常用的R123等。
(2)中温(中压):0℃>tS>-60℃,0.3Mpa<2.0Mpa,常用的有氨,R12,R22,R134a,丙烷等。
(3)低温(高压):tS≦-60℃,常用的有R13,乙烯,R744(CO2)等。
编号,命各标示方法;
按照国际统一规定用字母“R”代表制冷剂,加上后面的数字和字母组成在GB7778-1987中做了明确规定。简述如下:
(1)无机化合物。
规定为R700加上无机化合物的相对分子质量的整数部分组成
NH3(氨)H2O(水)CO2(二氧化碳)
分子量171844
编号R717R718R744
(2)氟利昂和烷氢类:
烷氢类化合物的分子通式:CmH2m+2
氟利昂是饱合碳氢化合物(烷族)的卤族元素衍生物的总称,分子通式为R(m-1)(n+1)(X),若有Br(溴)原子,再加字母B和原子数,若(m-1)=0,则“0”略去不写。
下面列举几种编号
名称分子式m,n,x,z值编号
一氯二氟甲烷CHF2Clm=1,n=1,x=2,z=0R22
二氯撒氟乙烷C2HF3Cl2m=2,n=1,x=3,z=0R123
三氟一溴甲烷CF3Brm=1,n=0,x=3,z=1R13B1
丙烷C3H8m=3,n=8,x=0,z=0R290
(3)混合制冷剂。
混合制冷剂以获取命名的顺序编号的
共沸混合制冷剂编号为R5,从R500开始R501,R502等。
非共沸混合制冷剂编号为R4,从R401,R404,R410等。
同素异构体加注小写数字母,如CHF2-CHF2R134,CF3-CH2FR134a
4.常用制冷剂性质
(1)氨:标准蒸发温度为-33.4℃,凝固温度为-77.7℃,压力适中,单位容积制冷量大,流动阻力小,热导率大。价格低廉对大气臭氧层无破坏作用,故被广泛应用在蒸发温度-65℃以上的大中型制冷机中。
缺点是毒性较大,可燃,可爆,有强烈刺激性臭味,等熵指数较大,对锌铜有腐蚀作用。
(2)氟利昂:重点分析热水器发文时常用的
1)R22:对大气臭氧层有轻微破坏作用,并产生温室效应,被列为第二批限用禁用的制冷剂。我国将在2040年1月1日起禁止生产和使用。
R22是应用最广泛的中温制冷剂,沸点-40.8℃,凝固点-160℃,无色,气味弱,不燃烧,不爆炸,属安全制冷剂。它与润滑油部分互溶,需采取回油措施。
2)R142b.沸点较高-9.25℃.凝固点-130.8℃最大特点是在很高的冷凝温度下,冷凝压力并不高。如80℃时只有1.35Mpa,因此它适合在热泵装置和高环境温度下使用。
对大气臭氧层有微弱的破坏作用,也将在2040年禁用。
3)R134a。沸点-26.5℃,凝固点-101℃,无色,无味,不燃,不爆,
但与矿物性润滑油不相溶,必须采用聚脂类合成油(如聚烯烃乙二醇),与丁腈橡胶不相溶,故密封件须改为聚丁腈橡胶,吸水性较强,易与水反映生成酸,腐蚀管络及压缩机,对系统干燥度要求更高,系统中的干燥剂要换成XH-7或XH-9分子筛。压缩机电机线圈绝缘材料必须加强绝缘等级,是一种不太成熟的制冷剂。
4)发文时认为较有前途的R22潜代品为R407c和R410A。
R407c是R32R125R134a以23:25:52的质量百分比组成的三元非共沸制冷剂,蒸发压力和制冷压力与R22非常接近。但在制热工况下单位容积制冷量和COP都小于R22。在相同设计运行能力的热泵热水系统中,采用R407c热水加热系统耗功明显高于R22系统。使得在高水温时COP低于R22系统。
R410A是R32和R125按照50:50的质量百分比组成的近共沸混合制冷剂。其温度滑移不超过0.2℃,这给制冷剂充灌,设备更换提供了方便。但是R410A制热工况下的COP比R22约小9%,其蒸发压力,冷凝压力以及容积制冷量都比R22大的多,同温度下它的压力值比R22约高60%,传热性能及流动性较好。不能直接用于R22系统。必须重新设计压缩机,换热器,管路和系统。
5)C02制冷剂
绿色环保天然工质C02以其无毒,对臭氧层与影响,不产生温室效应和良好的热力学性质等优点,再度受到人们的重视。此外,C02给临界环境系统所具有的较高的排气温度和气体冷却器较大的温度滑移。它在热泵热水器领域具有其他工质无法比拟的优势。
主要优势:
①无毒,不可燃。具有很好的安全性。消耗臭氧潜能值ODP=0,全球变暖潜能值GWP=1,有着良好的的经济性,而不存在回收问题,具有环境友好性。
②物理化学性能稳定。与润滑油共溶性良好。粘度很低,这样可以提高流速,压降不会太大,改善传热,进一步减小部件尺寸和系统重量。
③绝缘指数(K)值较高,虽有使压缩机排气温度偏高的问题,但符合制取较高温度热水的要求。同时,由于C02低于工作压力P0很高,压缩机压缩比相对其他系统低的多,压缩机效率高。
④C02分子量比高分子化合物的小得多,因此相对于一定的蒸发温度,它的蒸发(汽化)潜热比较大,此外,高的工作压力,使压缩机吸气比容较小,单位容积制冷量较大,可以减少尺寸,使系统结构紧凑。
⑤C02低的临界温度,使其在热泵系统循环中处于跨临界状态。在放热过程中较大的温度滑移,可以和变温热源较好的匹配。
C02应用研究的一个重要领域是热泵热水器(HPWH)。C02跨临界循环中气体冷却器所具有的较高的排气温度,较大的温度滑移和冷却介质的温升过程相匹配,使其在热泵循环方面具有独特的优势。
通过调整循环的排气压力,可使气体冷却器的排热过程较好适应外部热源的温度和温升需要。研究结果表明,当用环境空气作热源,0℃环境进水温度8℃,热水出水温度为60℃时,该系统COP值高达4.3.一个更大优点是毫无困难的产出90℃的热水COP值仍较高。而普通的热泵热水器限制产水温度在55℃以下。
因而C02热泵系统可较好的满足采暖,空调和生活热水的加热要求。C02作为制冷工质在热泵中的应用将有效的解决空调冷热源面临的资源与环境压力,应用前景良好。