振荡线圈

振荡线圈是超外差式收音机中不可缺少的元件。在超外差式收音机中需要产生一个比外来信号高465kHz的高频等幅信号,这个任务就是由振荡线圈与电容组成的振荡回路完成的

振荡线圈基本信息

中文名称 振荡线圈 概述 超外差式收音机中不可缺少的元件
分类 中波振荡线圈、短波振荡线圈 行振荡线圈 黑白电视机中用来调整行频的

在黑白电视机中也用了振荡线圈,是用来调整行频的,因此叫行振荡线圈。它与行振荡管组成振荡屯路,当行频偏离15625Hz时,调节行振荡线圈的旋钮,便可恢复证常的行频,以达到行同步的目的。行振荡线圈的外形如图(b)所宗,其内部由磁心及绕在磁心上的线圈构成。外部的调节旋钮 (实为塑料杆)插入磁心的方孔中,调节旋钮时,改变了磁心与线圈之间的相对距离,从而达到了改变电感量的目的。

振荡线圈造价信息

市场价 信息价 询价
材料名称 规格/型号 市场价
(除税)
工程建议价
(除税)
行情 品牌 单位 税率 供应商 报价日期
线圈 MQ1-15N(5141)线圈 220V 查看价格 查看价格

13% 安顺市西秀区长城五金机电经营部
线圈 MZS1A-80H 线圈 查看价格 查看价格

13% 安顺市西秀区长城五金机电经营部
线圈 MQ1-15N(5141) 线圈 380V 查看价格 查看价格

13% 安顺市西秀区长城五金机电经营部
线圈 MQ1-3Z(6111) 线圈 380V 查看价格 查看价格

13% 安顺市西秀区长城五金机电经营部
线圈 MZD1-300 线圈 380V 查看价格 查看价格

13% 安顺市西秀区长城五金机电经营部
线圈 MQ1-5N(5121) 线圈 380V 查看价格 查看价格

13% 安顺市西秀区长城五金机电经营部
线圈 MZS1-45H 线圈 380V 查看价格 查看价格

13% 贵州正泰电气销售有限公司
线圈 MQ1-5Z(6121) 线圈 380V 查看价格 查看价格

13% 贵州正泰电气销售有限公司
材料名称 规格/型号 除税
信息价
含税
信息价
行情 品牌 单位 税率 地区/时间
加感线圈 查看价格 查看价格

肇庆市2003年3季度信息价
加感线圈 查看价格 查看价格

韶关市2010年7月信息价
35kV消弧成套装置 干式消弧线圈容量1100kVA 查看价格 查看价格

广东2022年3季度信息价
35kV消弧成套装置 干式 消弧线圈容量900kVA 查看价格 查看价格

广东2022年2季度信息价
35kV消弧成套装置 干式 消弧线圈容量 1100kVA 查看价格 查看价格

广东2021年4季度信息价
35kV消弧成套装置 干式 消弧线圈容量 900kVA 查看价格 查看价格

广东2021年3季度信息价
35kV消弧成套装置 干式 消弧线圈容量 630kVA 查看价格 查看价格

广东2021年3季度信息价
35kV消弧成套装置 干式 消弧线圈容量 630kVA 查看价格 查看价格

广东2021年2季度信息价
材料名称 规格/需求量 报价数 最新报价
(元)
供应商 报价地区 最新报价时间
触发线圈 道闸地感线圈|18m 1 查看价格 深圳市捷顺科技实业股份有限公司 广西  防城港市 2022-12-08
分闸线圈 分闸线圈|1个 2 查看价格 广东辉奥电气设备制造有限公司 广东  深圳市 2021-11-05
失压线圈 失压线圈|1个 2 查看价格 广东辉奥电气设备制造有限公司 广东  深圳市 2021-11-05
车感线圈 1捆线圈50米|6台 1 查看价格 广州赛瑞电子有限公司 江西  南昌市 2021-06-29
车感线圈 1捆线圈50米|6台 1 查看价格 广州赛瑞电子有限公司 江西  南昌市 2021-06-29
车感线圈 1捆线圈50米|6台 3 查看价格 厦门科拓通讯技术股份有限公司 江西  南昌市 2021-03-17
车感线圈 1捆线圈50米|6台 3 查看价格 厦门科拓通讯技术股份有限公司 江西  南昌市 2021-03-17
线圈 1700×2080×680、线圈柜材质为16mm厚三聚氰胺油浸纸敷面实木颗粒 板|9个 3 查看价格 广州亿达实验设备工程有限公司 全国   2022-04-22

振荡线圈简介

振荡线圈分为中波振荡线圈、短波振荡线圈。振荡线圈的结构如图(a)所示。

振荡线圈的整个结构装在金属屏蔽罩内,下面有引出脚,上面有调节孔,磁帽相磁心都是由铁氧体制成的。线圈绕在磁心上,再把磁帽罩在磁心上,磁帽上有螺纹,可在尼龙支架上旋上旋下,从而调节了线圈的电感量。

图:振荡线圈

振荡线圈常见问题

  • 地感线圈的线圈的匝数

    为了使检测器工作在最佳状下,线圈的电感量应保持在100uH-300uH之间。在线圈电感不变的情况下,线圈的匝数与周长有着重要关系。周长越小,匝数就越多。一般可参照下表:线圈周长 线圈匝数3米以下根据实...

  • 线圈的计算公式

    阻抗(ohm) = 2 * 3.14159 * F(工作频率) * 电感量(mH),设定需用 360ohm 阻抗,因此:电感量(mH) = 阻抗 (ohm) ÷ (2*3.14159) ÷ F (工作...

  • 线圈的匝数怎么数?

    答:是4匝,左右两边算一匝。例如:150:5的电流互感器(上面标注:1匝:150A,2匝:75A,3匝:50A。)导线穿过1次互感器,则为1匝。查穿过内框(圆框或矩形框)的导线根数。

振荡线圈文献

罗氏线圈原理 罗氏线圈原理

格式:pdf

大小:132KB

页数: 2页

评分: 4.5

罗氏线圈测量电流的理论依据是 “法拉第电磁感应定律 ”和“安培环路定律 ”。 当被测电流沿轴线通过罗氏线圈中心时 ,在环形绕组所包围的体积内产生相应变化的磁场, 强度为 H,由安培环路定律得: ∮H·dl=I(t) 线圈的感应电压与 H 的变化率成正比,因此,所有线圈的感应电势之和与电流的变化率成 正比。 也就是: e(t)=di/dt 对输出电压 e(t)求积分,可获取 i,因此,罗氏线圈一般与积分器配套使用。 罗氏线圈工作原理 罗氏线圈是一种空心环形的线圈, 可以直接套在被测量的导体上。 导体中流 过的交流电流会在导体周围产生一个交替变化的磁场, 从而在线圈中感应出一个 与电流变比成比例的交流电压信号。 线圈的输出电压可以用公式 Vout=M di/dt 来表示。其中 M 为线圈的互感 .di/dt 则是电流的变比。通过采用一个专用的积分器将线圈输出的电压信号进行积分可 以得到另

立即下载
罗氏线圈简介 罗氏线圈简介

格式:pdf

大小:132KB

页数: 2页

评分: 4.5

Rogowski线圈(洛氏线圈 )又叫电流测量线圈、微分电流传感器,是一个均匀 缠绕在非铁磁性材料上的环形线圈。输出信号是电流对时间的微分。通过一个 对输出的电压信号进行积分的电路,就可以真实还原输入电流。该线圈具有电 流可实时测量、响应速度快、不会饱和、几乎没有相位误差的特点,故其可应 用于继电保护,可控硅整流,变频调速,电阻焊等信号严重畸变以及电炉、短 路测试、雷电信号采集等大电流的场合。 本产品配合积分器提供的香蕉形插头、 BNC接头,能够方便接入采集板卡、示 波器和万用表等测量仪器。 适用于毫安到兆安范围的电流测试 良好的线性度 带宽范围大 无二次开路危险 过电流能力强 不易受外界电磁干扰 低功耗 重量轻 额定电流 (rms) 10A至 8000A 满量程输出 1Vrms 过载能力 300%FS 适用温度范围 - 25℃至+70℃ 带宽 1Hz至 1MHz 相位差 90±0.1 度

立即下载

RCC由一个主开关晶体管、一个变压器和一些电阻、电容、二极管组成,并不包含集成芯片。不包含集成芯片,使得RCC的成本较采用集成芯片的电源电路为低。但随着集成电路芯片的降价(如今一个芯片的价格仅为人民币0.5元左右),RCC的成本优势已经非常弱。

振荡线圈变换器主开关晶体管

传统的RCC一般采用功率三极管(BJT)作为开关管。较新的设计采用了金属-氧化物-半导体场效应管(MOSFET),以实现更低功耗以及准谐振等功能。

振荡线圈变换器变压器

RCC的变压器由三个或以上的绕组组成,包含输入侧的一个主输入绕组,一个反馈绕组以及输出侧的一个或多个输出绕组。和所有的反激变换器一样,这个变压器需要承受大的直流偏磁。

振荡线圈变换器辅助电路

辅助电路需要二极管、电阻、电容等,实现电流限制、电压限制等功能。

振荡线圈变换器基本原理

RCC的功率部分如同普通的反激变换器一样操作。信号和控制部分原理如下:

1.当加入输入电压Vin(电阻RG连接Tr1的基极),电流Ib流过Rb,Tr1导通,此Ib为启动电流。Tr1的collector电流Ic波形一般从0开始。

2. Tr1一旦进入ON状态,transformer的P1线圈已加入输入电压Vin,因此P2线圈形成的电压为Tr1提供了基极电流,使得Tr1可以保持导通。

3. Tr1的集电极电流成斜坡状上升,直到电流为βIb,此时基极电流无法维持Tr1晶体管饱和导通,晶体管集电极--发射极之间的电压上升。而这里的电压上升使得变压器Np上的输入电压下降,更导致Ib下降。于是形成了正反馈,使得Tr1最终关闭。

4. Tr1关闭后如同其他反激变换器一样,储存在变压器内部的能量流到次级电容里,为负载供电。在变压器内部能量未释放完时,基极一直被次级反射来的负电压下拉,晶体管保持关闭。变压器内部能量释放完毕后,电路工作状态转入第1步,形成周期性循环。

5.如果在集电极有较大电流时使用其他方法导致基极电流不足,也可以触发正反馈机制关断晶体管Tr1。这一特点常用于实现电流限制和稳压。(即在电流或电压过大时减小占空比或禁止晶体管开通)

振荡线圈变换器限流、稳压原理

基本的RCC电路天然有着限制峰值电流的特征。由于基极电阻的限流作用,基极电流无法超过Vin/Np*Nb/Rb,从而让集电极电流在超过βIb时触发正反馈关断机制。 实际应用中,这种限流是不准确的,因为晶体管的β离散性很大(同种型号晶体管β可以相差4倍),并且输入电压Vin不固定。实际采取的大多是电流检测电阻 NPN晶体管对基极分流的方法。图1中的R3是电流检测电阻,当它上面的电压加上1N4148的导通压降(约0.8V)超过8050的导通电压时,8050导通,拉出基极电流,使得基极欠流,触发正反馈机制从而关断。

RCC的稳压是通过基极绕组的反激电压实现的。当晶体管关断,基极绕组异名端反接的的电容C2充电。C2的电压和C3的电压成比例Nb/Ns。当C2的电压超过了稳压管D8的齐纳电压,C2就流出电流,把基极电压拉低,阻止或减缓晶体管导通,从而间接控制了C3上的输出电压。

目前被普遍认识的是RCC电路对元件、布线、生产工艺要求很高。使用劣质元件、水准不高的布板、变压器绕制不恰当都可能导致RCC电路无法工作,或在正常工作一段时间后失效。常见失效模式包括但不限于:

振荡线圈变换器感导致的二次击穿

RCC最常见也最典型的失效现象是主开关管烧毁。大部分此类故障是由变压器基极线圈漏感导致的。 变压器基极线圈的漏感和基极串联的电阻形成LR低通滤波电路,对电流信号有延迟作用,导致在集电极电压上升时,基极电流减小的正反馈出现延迟。而这样的延迟对于绝大部分双极型开关管是致命的,它导致晶体管越出安全工作区,以及发热量过大,最终导致不可逆的二次击穿。

此类故障较少出现在使用功率MOSFET制作的RCC上,因为功率MOSFET的安全工作区远大于双极型晶体管。并且功率MOSFET为电压控制型,开通/关断阈值范围窄,MOSFET较为不易出现同时承受大电流和高电压的情况,即使偶尔出现也不会发生不可逆的失效。 曾经有一批基于MOSFET的RCC电源常常因开关管损坏而失效,经查证,是因为厂家技术考虑不周,机械模仿110V地区产品,在220V交流线路(整流后电压高达311V)上,使用了耐压500V的MOSFET(型号是IRF840)。

振荡线圈变换器输出电压不稳,损坏用电器

另一常见的问题是输出电压明显超过设计输出电压,导致负载过热、烧毁。特别是当负载为锂离子电池时,输出过高电压极端危险,可能导致电池内部气体液体泄漏甚至爆炸。 原因一是变压器绕组间不完全耦合,存在漏感,导致互调整率差。在变换器处于轻载状态,占空比小的时候,此问题更加严重。二是和集成芯片中包含的运算放大器(放大倍数高达数百倍、数千倍)相比,电压环路开环增益太小,精确稳压困难。

并且这两个缺点几乎是不可能同时妥善解决的。解决二次击穿问题要求基极线圈和主线圈近绕以保持耦合良好,而解决输出电压不稳的问题要求次级线圈和基极线圈近绕,又要求初次级之间数千伏的电气隔离。在有限绕线位置的变压器骨架下,要达到这两个矛盾的目的,是十分困难的。 2100433B

RCC由一个主开关晶体管、一个变压器和一些电阻、电容、二极管组成,并不包含集成芯片。不包含集成芯片,使得RCC的成本较采用集成芯片的电源电路为低。但随着集成电路芯片的降价(如今一个芯片的价格仅为人民币0.5元左右),RCC的成本优势已经非常弱。

主开关晶体管

传统的RCC一般采用功率三极管(BJT)作为开关管。较新的设计采用了金属-氧化物-半导体场效应管(MOSFET),以实现更低功耗以及准谐振等功能。

变压器

RCC的变压器由三个或以上的绕组组成,包含输入侧的一个主输入绕组,一个反馈绕组以及输出侧的一个或多个输出绕组。和所有的反激变换器一样,这个变压器需要承受大的直流偏磁。

辅助电路

辅助电路需要二极管、电阻、电容等,实现电流限制、电压限制等功能。

基本原理

RCC的功率部分如同普通的反激变换器一样操作。信号和控制部分原理如下:

1.当加入输入电压Vin(电阻RG连接Tr1的基极),电流Ib流过Rb,Tr1导通,此Ib为启动电流。Tr1的collector电流Ic波形如图,一般从0开始。

2. Tr1一旦进入ON状态,transformer的P1线圈已加入输入电压Vin,因此P2线圈形成的电压为Tr1提供了基极电流,使得Tr1可以保持导通。

3. Tr1的集电极电流成斜坡状上升,直到电流为βIb,此时基极电流无法维持Tr1晶体管饱和导通,晶体管集电极--发射极之间的电压上升。而这里的电压上升使得变压器Np上的输入电压下降,更导致Ib下降。于是形成了正反馈,使得Tr1最终关闭。

4. Tr1关闭后如同其他反激变换器一样,储存在变压器内部的能量流到次级电容里,为负载供电。在变压器内部能量未释放完时,基极一直被次级反射来的负电压下拉,晶体管保持关闭。变压器内部能量释放完毕后,电路工作状态转入第1步,形成周期性循环。

5.如果在集电极有较大电流时使用其他方法导致基极电流不足,也可以触发正反馈机制关断晶体管Tr1。这一特点常用于实现电流限制和稳压。(即在电流或电压过大时减小占空比或禁止晶体管开通)

限流、稳压原理

基本的RCC电路天然有着限制峰值电流的特征。由于基极电阻的限流作用,基极电流无法超过Vin/Np*Nb/Rb,从而让集电极电流在超过βIb时触发正反馈关断机制。 实际应用中,这种限流是不准确的,因为晶体管的β离散性很大(同种型号晶体管β可以相差4倍),并且输入电压Vin不固定。实际采取的大多是电流检测电阻+NPN晶体管对基极分流的方法。图中的R3是电流检测电阻,当它上面的电压加上1N4148的导通压降(约0.8V)超过8050的导通电压时,8050导通,拉出基极电流,使得基极欠流,触发正反馈机制从而关断。

RCC的稳压是通过基极绕组的反激电压实现的。当晶体管关断,基极绕组异名端反接的的电容C2充电。C2的电压和C3的电压成比例Nb/Ns。当C2的电压超过了稳压管D8的齐纳电压,C2就流出电流,把基极电压拉低,阻止或减缓晶体管导通,从而间接控制了C3上的输出电压。

振荡线圈相关推荐
  • 相关百科
  • 相关知识
  • 相关专栏