制动力调节装置感载比例阀
感载比例阀利用车身与车桥之间的距离变化(外界作用力)来改变弹簧的预紧力,随着车辆载荷的增加,相应地进行调整,使得在任何载荷条件下都能得到一个近似理想的制动力分配。它安装在制动总泵与后轮制动分泵之间的管道上,由壳体、柱塞、阀门、弹簧等组成。壳体进油孔与制动总泵出油孔相通,出油孔与车轮制动分泵相通。当外界作用力小时,感载比例阀的柱塞在弹簧预紧力的作用下被推至最右边,两孔相通,总泵与分泵压力相等。当外界作用力大于弹簧预紧力,迫使柱塞左移,令柱塞与阀门接触并关闭了阀门,切断总泵通向分泵的通道;若外界作用力压力继续增大,又会使柱塞右移,柱塞与阀门脱离接触,阀门又被打开,总泵与分泵又相通。这样比例阀反复动作使分泵的液压不断得到调整,也即不断调整了后轮制动力。
质心高度与轴距的比值较小的汽车,在制动时前后轮间载荷转移较小。在这种情况下,只采用限压阀,将使后轮制动力远小于后轮附着力,即附着力的利用率太低,不能满足制动力尽可能大的要求。因此,需采用比例阀或采用其特性能随汽车轴载质量变化而改变的感载比例阀,从而使汽车前后轮的附着力能充分利用,以提高制动效果。
它的安装位置同限压阀,只是多装置了车身和车桥相对位置变化时的感载连接件。
制动力调节装置比例阀
比例阀是一种输出量与输入信号成比例的液压阀.它可以按给定的输入信号连续的按比例地控制液流的压力,流量和方向,广泛应用于要对液压参数进行连续控制或程序控制,但对控制精度和动态特性要求不太高的液压系统中。
制动力调节装置限压阀
限压阀是一种最简单的压力调节阀,串联在制动主缸与后轮制动器的管路之间。它的作用是当前后制动管路压力由零同步增长到一定值后,即自动将后轮制动器管路中的液压限定在该值不变,防止后轮抱死。
1、首先把压力,流量值达到最大看压力表无任何动作是否有底压,如果有请调节压力阀于0。2、再把流量值调节于0启动任何动作是否有动作,如果有请调节流量阀无动作。以上条件必须压力流量最低电流200ma最高电...
气动控制系统中使用动作频率较低的开关式(ON-OFF)的换向阀来控制气路的通断。靠减压阀来调节所需要的压力,靠节流阀来调节所需要的流量。这种传统的气动控制系统要想要有多个输出力和多个运动速度,就需要多...
SMC电气比例阀设置方法@SMC比例阀使用说明书 产品介绍 安装好电气比例阀后,给比例阀上电,待显示器的数字闪烁停止后如果按任意键显示屏出现LOC字样的时候说明我们需要解锁。
车轮停止转动,在地面上滑拖的情况被称为“抱死”。受地面附着条件限制,制动管路中的工作压力再增大,也不可能使制动力增加。车轮一旦抱死便会失去抗侧滑的能力。如前轮抱死时,会使汽车失去方向操纵性,无法转向;如后轮抱死而前轮滚动时,会使汽车失去方向稳定性,丧失了对侧向力的抵抗能力而侧滑(甩尾),造成极为严重的恶果。可见,后轮抱死的危险性远大于前轮。因此,要使汽车既能得到尽可能大的制动力,又能保持行驶方向的操纵性和稳定性(不失控、不甩尾),即最佳制动状态,就必须使汽车前后轮同时达到“抱死”的边缘。其同步条件是:前后车轮制动力之比等于前后车轮对路面垂直载荷之比。
但是,随着装载量不同和汽车制动时减速度所引起载荷的转移不同,汽车前后车轮的实际垂直载荷比是变化的。因此,要满足最佳制动状态的条件,汽车前后轮制动力的比例也应是变化的。
无制动力调节装置的汽车,其前后车轮控制管路的工作压力基本是相等的,其压力比永远等于1。这就使得不论前后车轮制动器的型式、尺寸如何不同,但制动力的分配比例却永远是个常数,不可能使汽车在各种条件下都能获得最佳的制动状态。但实际上,随着汽车载荷以及工况的变化,知心的位置会发生变化,制动力的分配比例不变的话,不可能使汽车在各种条件下都能获得最佳的制动状态。
为满足上述要求,在一些汽车上采用了各种制动力调节装置,来调节前后车轮制动管路中的工作压力。常用的有限压阀、比例阀和感载比例阀。
比例阀压力调节 今后,政府将承担起环境和资源方面的公共职责。 财政部官员表示, 在企业承担应有成本的 同时,政府应承担相应的公共职责。政府确立对资源和环境的宏观调控能力。对资源而言, 政府必须控制矿业权一级市场。 对环境而言, 政府要根据环境容量科学核定污染排放总量指 标,并建立初始排污权有偿取得制度。这是建立排污权市场的前提。 此外,政府还要加大对环境保护的投入。 按公共财政的要求, 中央和地方都要加大对污染防 治、生态保护和环保监管能力建设的资金投入,履行政府对公民的承诺。 据悉,财政部正在加快出台配套措施,积极稳妥推进改革。财政部、国土资源部和中国人民 银行日前联合发出通知, 明确规定自 9 月 1日起,中国探矿权采矿权价款收入按固定比例进 行分成,其中 20%归中央所有, 80%归地方所有。省、市、县分成比例由省级人民政府根据 实际情况自行确定。 财政部经济建设司负责人表示, 中央
根据制动压力调节装置的工作原理,利用电流变效应,可以设计出电流变液体控制阀,通过外加电场对通过电流变阀中的电流变液的流动阻力的控制,从而实现液体压力、流量乃至方向的控制。本文采用多个电流变阀组成的桥路结构为液压控制系统的核心,对电控液压制动系统的制动压力调节装置进行了设计。
动力制动器鼓式制动器
鼓式制动器的旋转元件是制动鼓,固定元件是制动蹄,制动时制动蹄在促动装置作用下向外旋转,外表面的摩擦片压靠到制
动鼓的内圆柱面上,对鼓产生制动摩擦力矩。
凡对蹄端加力使蹄转动的装置统称为制动蹄促动装置,制动蹄促动装置有轮缸、凸轮和楔。
以液压制动轮缸作为制动蹄促动装置的制动器称为轮缸式制动器;以凸轮作为促动装置的制动器称为凸轮式制动器;用楔作为促动装置的制动器称为楔式制动器。
动力制动器盘式制动器
盘式制动器又称浮刹或钳式刹车,主要由制动钳、制动盘和摩擦片组成,摩擦片中的的旋转元件是以端面为工作面的金属圆盘,称为制动盘,用螺钉固定在车轮的轮毂上,它暴露在外面,做得好看是一个很好的装饰品。 盘式制动与鼓式制动器相比有以下优点: 1)无摩擦助势作用,因而制动器效能受摩擦系数的影响较小,即效能较稳定。 2)浸水后效能降低较小,而且只需经过一两次制动即可恢复正常。 3)在输出制动力矩相同的情况下,尺寸和质量较小。 4)制动盘沿厚度方向的热膨胀量极小,不会像制动鼓的热膨胀那样使制动器间隙明显增大而导至制动摇臂的行程变大。盘式制动器的不足之处是效能较低。
盘式制动器
靠制动块压紧在制动轮上实现制动的制动器。单个制动块对制动轮轴压力大而不匀,故通常多用一对制动块,使制动轮轴上所受制动块的压力抵消。
块式制动器有外抱式和内张式两种。
①外抱块式制动器:它按操纵装置行程的长短又分为短行程块式制动器和长行程块式制动器.短行程块式制动器的磁铁直接装在制动臂上。工作时,动铁芯绕销轴转动实现松闸;磁铁断电时靠主弹簧紧闸。这种制动器结构紧凑,紧闸和松闸动作快,但冲击力大。长行程块式制动器可以通过制动杠杆系统产生大的松闸力,但制动动作慢,适于大型制动器。
②内张块式制动器:制动块位于制动轮的内部,通过踏板、拉杆和凸块使制动块张开,压紧制动轮内面而紧闸,松开踏板则弹簧拉回制动块而松闸。这种制动器也可用液压或气压等操纵。内张式块式制动器结构紧凑,防尘性好,可用于安装空间受限制的场合,广泛用于各种车辆。
块式制动器制动瓦块
该标准适用于外抱双块式制动器。
按制动瓦块(简称制动瓦)与制动衬垫的联接方式,及制动瓦铰轴孔的端部有无沉孔分为以下四种:
B1型:制动瓦上铆钉孔,用粘接方式联接制动衬垫,制动瓦铰轴孔的端部无沉孔;
B1C型:制动瓦上无铆孔式,用粘接方式联接制衬垫,制动瓦铰轴孔的端部有沉孔;
B2型:制动瓦上有铆钉孔,用铆接方式联接制动衬垫,制动瓦铰轴也的端部的端部无沉孔;
B2C型:制动瓦上有铆钉孔,用铆接方式联接制动衬垫,制动瓦铰轴也的端部有沉孔 。