轴承滚道超精密砂带研抛的理论方法与技术基础基本信息

中文名 轴承滚道超精密砂带研抛的理论方法与技术基础 依托单位 清华大学
项目负责人 冯之敬 项目类别 面上项目

砂带研究抛作为一种精密加工方法,表现出优越的工艺性能。本项目主要研究轴承滚道这种大曲率凹弧面,尤其是针对内孔滚道的超精密砂带研抛的基础理论、方法、机理及工艺参数优化。本项研究提出了砂带研抛内孔的新型导引机构和传带原理,满足了砂带平稳导入内孔磨削区的传动要求,实现了内孔的砂带磨削和研抛;研制了采用弧面摆动和振动方式分别用于球轴承滚道和滚柱轴承滚道研抛的砂带研抛头架;研究了轴承滚道砂带研抛的工艺规律和基本工艺方法、工艺参数;实验测试结果,轴承滚道砂带研抛的表面粗糙度达Ra0.02μm,研抛过程保持了滚道的原始几何截面形状精度。项目通过国家教委鉴定,技术方法属国内外道创,工艺技术效果达到国际先进水平。

轴承滚道超精密砂带研抛的理论方法与技术基础造价信息

市场价 信息价 询价
材料名称 规格/型号 市场价
(除税)
工程建议价
(除税)
行情 品牌 单位 税率 供应商 报价日期
调心滚子轴承 规格(mm):400×650×200;保持架(材质):球墨铸铁;代号:23180CAF3/W33;系列:0(G); 查看价格 查看价格

HRB

13% 济南日拓机电设备有限公司
圆柱滚子轴承 保持架材质:铜;品种:滚动轴承;规格:140×250×42; 查看价格 查看价格

HRB

13% 上海鑫哈轴承机电有限公司
圆锥滚子轴承 保持架材质:钢板;品种:滚动轴承;规格:304.8×393.7×107.95; 查看价格 查看价格

HRB

13% 上海鑫哈轴承机电有限公司
圆柱滚子轴承 保持架材质:黄铜;品种:滚动轴承;规格:53.5×90×23; 查看价格 查看价格

HRB

13% 上海鑫哈轴承机电有限公司
调心棍子轴承 规格(mm):130×280×93;净重:29; 查看价格 查看价格

HRB

13% 济南天昊轴承有限公司
深沟球轴承 内径(mm):300;厚度(mm):160;品种:滚动轴承;外径(mm):460;规格:Ф32; 查看价格 查看价格

SKF

13% 上海启凯机电设备有限公司
角接触球轴承 保持架材质:铜;品种:滚动轴承;规格:150×320×65; 查看价格 查看价格

HRB

13% 上海鑫哈轴承机电有限公司
角接触球轴承 保持架材质:胶木;品种:滚动轴承;规格:35×72×17; 查看价格 查看价格

HRB

13% 上海鑫哈轴承机电有限公司
材料名称 规格/型号 除税
信息价
含税
信息价
行情 品牌 单位 税率 地区/时间
轴承 Ф32 查看价格 查看价格

韶关市2010年4月信息价
轴承 205.0 查看价格 查看价格

韶关市2010年4月信息价
轴承 查看价格 查看价格

韶关市2009年12月信息价
轴承 查看价格 查看价格

m 韶关市2008年10月信息价
轴承 查看价格 查看价格

m 韶关市2008年7月信息价
轴承 查看价格 查看价格

m 韶关市2008年6月信息价
轴承 查看价格 查看价格

m 韶关市2008年5月信息价
轴承 查看价格 查看价格

m 韶关市2008年2月信息价
材料名称 规格/需求量 报价数 最新报价
(元)
供应商 报价地区 最新报价时间
轴承6330 轴承6330|6个 1 查看价格 湘电长沙水泵厂有限公司 全国   2022-01-10
SKF轴承 SKF轴承6320|1个 1 查看价格 安徽博格曼机械密封件有限公司 全国   2022-01-10
轴承衬套 轴承衬套(HT200)|1个 1 查看价格 江西省瑞丰制泵有限公司 全国   2022-01-10
轴承 6212 轴承钢|8362只 4 查看价格 天津美瑞德轴承有限公司 天津  天津市 2015-10-30
轴承 6216 轴承钢|3894只 4 查看价格 天津美瑞德轴承有限公司 天津  天津市 2015-08-10
轴承 6226 轴承钢|4243只 4 查看价格 天津美瑞德轴承有限公司 天津  天津市 2015-07-29
轴承 6221 轴承钢|1152只 4 查看价格 天津美瑞德轴承有限公司 天津  天津市 2015-06-04
轴承 6210 轴承钢|7111只 4 查看价格 天津美瑞德轴承有限公司 天津  天津市 2015-05-29

批准号

59375240

项目名称

轴承滚道超精密砂带研抛的理论方法与技术基础

项目类别

面上项目

申请代码

E0509

项目负责人

冯之敬

负责人职称

教授

依托单位

清华大学

研究期限

1994-01-01 至 1996-12-31

支持经费

5(万元)

轴承滚道超精密砂带研抛的理论方法与技术基础常见问题

  • 滑动轴承的刮研方法是什么?

    滑动轴承的刮研方法1、刮研前,应仔细检查轴颈是不是光滑,是不是有锈蚀、碰伤等缺点,如有应先想法消除;2、然后,检查轴颈和轴的接触情况,检查方法,在轴径上涂上薄薄1层显示剂(如红丹粉、红倩油等),接着将...

  • 滚动轴承的装配方法

    滚动轴承的安装--几种轴承的安装方法 1) 向心推力型轴承的安装 向心推力型轴承包括圆锥滚子轴承和角接触球轴承,它们通常是成对安装的,这类轴承多数是可分离型,因此安装操作一般很方便,只是要注意安装时...

  • 4,轴承在装拆时的正确方法与注意什么

    1、首先测量安装位置的尺寸和公差是否符合图纸要求。2、安装前先将被安装位置擦拭干净,并涂上干净的机油或其他润滑油。3、如果是紧配合的安装设计,使用压力机或手锤,压入或打入。但是不能损坏轴承密封圈和保持...

轴承滚道超精密砂带研抛的理论方法与技术基础文献

FAG超精密轴承选型手册2_部分3 FAG超精密轴承选型手册2_部分3

格式:pdf

大小:9.4MB

页数: 28页

评分: 4.4

FAG超精密轴承选型手册2_部分3

立即下载
万向轴轴承外围滚道挡边位置尺寸测量方法的改进 万向轴轴承外围滚道挡边位置尺寸测量方法的改进

格式:pdf

大小:9.4MB

页数: 未知

评分: 4.7

万向轴轴承外圈滚道挡边位置尺寸通常采用样板测量,操作不方便且很难判断尺寸合格与否。因此,开发了专用测量仪器,并设计了组合标准件,可直接测量出外圈滚道挡边位置尺寸。

立即下载

2,小振荡采用超精密加工的十字交叉滚子导轨,摩擦阻力小,运动精度高,寿命长,刚性好。大往复拖板进给机构采用伺服电机、滚珠丝杠机构,进给精度高,稳定性好,可以在0~30·范围内调整。

3,工件及振荡电机均采用独立变频调速。

4,采用定心轴定位,端面压紧。

5,具有油石自动补偿功能。

6,采用强制上下料,效率高,稳定性好。

7,采用全封闭罩壳,安全美观。

超精密加工的发展经历了如下三个阶段。

(1)20世纪50年代至80年代为技术开创期。20世纪50年代末,出于航天、国防等尖端技术发展的需要,美国率先发展了超精密加工技术,开发了金刚石刀具超精密切削--单点金刚石切削(Single point diamond tuming,SPDT)技术,又称为"微英寸技术",用于加工激光核聚变反射镜、战术导弹及载人飞船用球面、非球面大型零件等。从1966年起,美国的unionCarbide公司、荷兰Philips公司和美国LawrenceLivemoreLaboratories陆续推出

各自的超精密金刚石车床,但其应用限于少数大公司与研究单位的试验研究,并以国防用途或科学研究用途的产品加工为主。这一时期,金刚石车床主要用于铜、铝等软金属的加工,也可以加工形状较复杂的工件,但只限于轴对称形状的工件例如非球面镜等。

(2)20世纪80年代至90年代为民间工业应用初期。在20世纪80年代,美国政府推动数家民间公司Moore Special Tool和Pneumo Precision公司开始超精密加工设备的商品化,而日本数家公司如Toshiba和Hitachi与欧洲的Cmfield大学等也陆续推出产品,这些设备开始面向一般民间工业光学组件商品的制造。但此时的超精密加工设备依然高贵而稀少,主要以专用机的形式订作。在这一时期,除了加工软质金属的金刚石车床外,可加工硬质金属和硬脆性材料的超精密金刚石磨削也被开发出来。该技术特点是使用高刚性机构,以极小切深对脆性材料进行延性研磨,可使硬质金属和脆性材料获得纳米级表面粗糙度。当然,其加工效率和机构的复杂性无法和金刚石车床相比。20世纪80年代后期,美国通过能源部"激光核聚变项目"和陆、海、空三军"先进制造技术开发计划"对超精密金刚石切削机床的开发研究,投入了巨额资金和大量人力,实现了大型零件的微英寸超精密加工。美国LLNL国家实验室研制出的大型光学金刚石车床(Large optics diamond turning machine,LODTM)成为超精密加工史上的经典之作。这是一台最大加工直径为1.625m的立式车床,定位精度可达28nm,借助在线误差补偿能力,可实现长度超过1m、而直线度误差只有士25nm的加工。

(3)20世纪90年代至今为民间工业应用成熟期。从1990年起,由于汽车、能源、医疗器材、信息、光电和通信等产业的蓬勃发展,超精密加工机的需求急剧增加,在工业界的应用包括非球面光学镜片、Fresnel镜片、超精密模具、磁盘驱动器磁头、磁盘基板加工、半导体晶片切割等。在这一时期,超精密加工设备的相关技术,例如控制器、激光干涉仪、空气轴承精密主轴、空气轴承导轨、油压轴承导轨、摩擦驱动进给轴也逐渐成熟,超精密加工设备变为工业界常见的生产机器设备,许多公司,甚至是小公司也纷纷推出量产型设备。此外,设备精度也逐渐接近纳米级水平,加工行程变得更大,加工应用也逐渐增广,除了金刚石车床和超精密研磨外,超精密五轴铣削和飞切技术也被开发出来,并且可以加工非轴对称非球面的光学镜片。

世界上的超精密加工强国以欧美和日本为先,但两者的研究重点并不一样。欧美出于对能源或空间开发的重视,特别是美国,几十年来不断投入巨额经费,对大型紫外线、x射线探测望远镜的大口径反射镜的加工进行研究。如美国太空署(NASA)推动的太空开发计划,以制作1m以上反射镜为目标,目的是探测x射线等短波(O.1~30nm)。由于X射线能量密度高,必须使反射镜表面粗糙度达到埃级来提高反射率。此类反射镜的材料为质量轻且热传导性良好的碳化硅,但碳化硅硬度很高,须使用超精密研磨加工等方法。日本对超精密加工技术的研究相对美、英来说起步较晚,却是当今世界上超精密加工技术发展最快的国家。日本超精密加工的应用对象大部分是民用产品,包括办公自动化设备、视像设备、精密测量仪器、医疗器械和人造器官等。日本在声、光、图像、办公设备中的小型、超小型电子和光学零件的超精密加工技术方面,具有优势,甚至超过了美国。日本超精密加

工最初从铝、铜轮毂的金刚石切削开始,而后集中于计算机硬盘磁片的大批量生产,随后是用于激光打印机等设备的多面镜的快速金刚石切削,之后是非球面透镜等光学元件的超精密切削。l982年上市的EastnlanKodak数码相机使用的一枚非球面透镜引起了日本产业界的广泛关注,因为1枚非球面透镜至少可替代3枚球面透镜,光学成像系统因而小型化、轻质化,可广泛应用于照相机、录像机、工业电视、机器人视觉、CD、VCD、DvD、投影仪等光电产品。因而,非球面透镜的精密成形加工成为日本光学产业界的研究热点。

尽管随时代的变化,超精密加工技术不断更新,加工精度不断提高,各国之间的研究侧重点有所不同,但促进超精密加工发展的因素在本质上是相同的。这些因素可归结如下。

(1)对产品高质量的追求。为使磁片存储密度更高或镜片光学性能更好,就必须获得粗糙度更低的表面。为使电子元件的功能正常发挥,就要求加工后的表面不能残留加工变质层。按美国微电子技术协会(SIA)提出的技术要求,下一代计算机硬盘的磁头要求表面粗糙度Ra≤0.2nm,磁盘要求表面划痕深度h≤lnm,表面粗糙度Ra≤0.1nmp。1983年TANIGUCHI对各时期的加工精度进行了总结并对其发展趋势进行了预测,以此为基础,BYRNE描绘了20世纪40年代后加工精度的发展。

(2)对产品小型化的追求。伴随着加工精度提高的是工程零部件尺寸的减小。从1989~2001年,从6.2kg降低到1.8kg。电子电路高集成化要求降低硅晶片表面粗糙度、提高电路曝光用镜片的精度、半导体制造设备的运动精度。零部件的小型化意味着表面积与体积的比值不断增加,工件的表面质量及其完整性越来越重要。

(3)对产品高可靠性的追求。对轴承等一边承受载荷一边做相对运动的零件,降低表面粗糙度可改善零件的耐磨损性,提高其工作稳定性、延长使用寿命。高速高精密轴承中使用的Si3N4。陶瓷球的表面粗糙度要求达到数纳米。加工变质层的化学性质活泼,易受腐蚀,所以从提高零件耐腐蚀能力的角度出发,要求加工产生的变质层尽量小。

(4)对产品高性能的追求。机构运动精度的提高,有利于减缓力学性能的波动、降低振动和噪声。对内燃机等要求高密封性的机械,良好的表面粗糙度可减少泄露而降低损失。二战后,航空航天工业要求部分零件在高温环境下工作,因而采用钛合金、陶瓷等难加工材料,为超精密加工提出了新的课题。

精密及超精密加工超精密加工

超精密加工是指亚微米级(尺寸误差为0.3~0.03µm,表面粗糙度为Ra0.03~0.005µm)和纳米级(精度误差为0.03µm,表面粗糙度小于Ra0.005µm)精度的加工。实现这些加工所采取的工艺方法和技术措施,则称为超精加工技术。加之测量技术、环境保障和材料等问题,人们把这种技术总称为超精工程。超精密加工主要包括三个领域:超精密切削加工如金刚石刀具的超精密切削,可加工各种镜面。它已成功地解决了用于激光核聚变系统和天体望远镜的大型抛物面镜的加工。超精密磨削和研磨加工如高密度硬磁盘的涂层表面加工和大规模集成电路基片的加工。超精密特种加工如大规模集成电路芯片上的图形是用电子束、离子束刻蚀的方法加工,线宽可达0.1µm。如用扫描隧道电子显微镜(STM)加工,线宽可达2~5nm。

a.超精密切削

超精密切削以SPDT技术开始,该技术以空气轴承主轴、气动滑板、高刚性、高精度工具、反馈控制和环境温度控制为支撑,可获得纳米级表面粗糙度。多采用金刚石刀具铣削,广泛用于铜的平面和非球面光学元件、有机玻璃、塑料制品(如照相机的塑料镜片、隐形眼镜镜片等)、陶瓷及复合材料的加工等。未来的发展趋势是利用镀膜技术来改善金刚石刀具在加工硬化钢材时的磨耗。此外,MEMS组件等微小零件的加工需要微小刀具,目前微小刀具的尺寸约可达50~100μm,但如果加工几何特征在亚微米甚至纳米级,刀具直径必须再缩小,其发展趋势是利用纳米材料如纳米碳管来制作超小刀径的车刀或铣刀。

b.超精密磨削

超精密磨削是在一般精密磨削基础上发展起来的一种镜面磨削方法,其关键技术是金刚石砂轮的修整,使磨粒具有微刃性和等高性。超精密磨削的加工对象主要是脆硬的金属材料、半导体材料、陶瓷、玻璃等。磨削后,被加工表面留下大量极微细的磨削痕迹,残留高度极小,加上微刃的滑挤、摩擦、抛光作用,可获得高精度和低表面粗糙度的加工表面,当前超精密磨削能加工出圆度0.01μm、尺寸精度0.1μm和表面粗糙度为Ra0.005μm的圆柱形零件。

c.超精密研磨

超精密研磨包括机械研磨、化学机械研磨、浮动研磨、弹性发射加工以及磁力研磨等加工方法。超精密研磨的关键条件是几乎无振动的研磨运动、精密的温度控制、洁净的环境以及细小而均匀的研磨剂。超精密研磨加工出的球面度达0.025μm,表面粗糙度Ra达0.003μm。

d.超精密特种加工

超精密特种加工主要包括激光束加工、电子束加工、离子束加工、微细电火花加工、精细电解加工及电解研磨、超声电解加工、超声电解研磨、超声电火花等复合加工。激光、电子束加工可实现打孔、精密切割、成形切割、刻蚀、光刻曝光、加工激光防伪标志;离子束加工可实现原子、分子级的切削加工;利用微细放电加工可以实现极微细的金属材料的去除,可加工微细轴、孔、窄缝平面及曲面;精细电解加工可实现纳米级精度,且表面不会产生加工应力,常用于镜面抛光、镜面减薄以及一些需要无应力加工的场合。

超精密加工技术在国际上处于领先地位的国家有美国、英国和日本。这些国家的超精密加工技术不仅总体成套水平高,而且商品化的程度也非常高。美国50年代未发展了金刚石刀具的超精密切削技术,称为“SPDT技术”(SinglePointDia-mondTurning)或“微英寸技术”(1微英寸=0.025μm),并发展了相应的空气轴承主轴的超精密机床,用于加工激光核聚变反射镜、战术导弹及载人飞船用球面、非球面大型零件等。英国克兰菲尔德技术学院所属的克兰菲尔德精密工程研究所(简称CUPE)是英国超精密加工技术水平的独特代表。如CUPE生产的Nanocentre(纳米加工中心)既可进行超精密车削,又带有磨头,也可进行超精密磨削,加工工件的形状精度可达0.1μm,表面粗糙度Ra<10nm。日本对超精密加工技术的研究相对于美、英来说起步较晚,但是当今世界上超精密加工技术发展最快的国家。北京机床研究所是国内进行超精密加工技术研究的主要单位之一,研制出了多种不同类型的超精密机床、部件和相关的高精度测试仪器等,如精度达0.025μm的精密轴承、JCS—027超精密车床、JCS—031超精密铣床、JCS—035超精密车床、超精密车床数控系统、复印机感光鼓加工机床、红外大功率激光反射镜、超精密振动-位移测微仪等,达到了国内领先、国际先进水平。哈尔滨工业大学在金刚石超精密切削、金刚石刀具晶体定向和刃磨、金刚石微粉砂轮电解在线修整技术等方面进行了卓有成效的研究。清华大学在集成电路超精密加工设备、磁盘加工及检测设备、微位移工作台、超精密砂带磨削和研抛、金刚石微粉砂轮超精密磨削、非圆截面超精密切削等方面进行了深入研究,并有相应产品问世。我国超精密加工技术与美日相比,还有不小差距,特别是在大型光学和非金属材料的超精加工方面,在超精加工的效率和自动化技术方面差距尤为明显。

轴承滚道超精密砂带研抛的理论方法与技术基础相关推荐
  • 相关百科
  • 相关知识
  • 相关专栏