F-T合成过程是指将合成气(CO H2)转化为烃类和少量有机含氧化合物(甲醇、乙醇、乙酸、乙醛、丙酮、乙酸乙酯等)的化学转化过程,在合成气转化成为上述化合物的化学反应过程中需要在催化剂的作用下、并在适合的温度和压力下进行,于此同时反应过程还伴随大量的反应热的释放。与传统的固定床反应器技术相比,采用气-液-固三相悬浮床反应器技术可以实现反应温度的有效控制和反应热的有效移出,同时在催化剂的产能方面得到强化,有利于实现单系列的大型化生产。与传统的流化床反应器技术相比,催化剂的反应环境得到改善,有利于降低催化剂的损失,同时有利于选择性地合成重质馏分产物,进而有利于提高中间馏份油特别是柴油的选择性。
德国科学家FransFischer等在上世纪初发现F-T反应后不久,用于该反应的气-液-固三相悬浮床反应器就已开始进行研究开发。早期由于对该反应过程的认识及技术条件的局限性,开发的F-T合成三相反应器在实验室得到了验证,但进一步放大则是不合适的,主要存在的问题是:
1、实验的结果不比传统固定床反应结果好;
2、三相悬浮床需要更大的反应器容积;
3、反应器需要耐酸;
4、为了形成充分的搅拌,需要大的循环量,能耗高;
5、反应产物移出反应器较为困难。
在1940-1950年代,德国的一些研究机构以及美国矿业局等在三相悬浮床F-T合成反应器方面进行了大量的放大开发工作,验证了采用这种合成气通过悬浮在液相石蜡中的催化剂床层发生F-T合成反应过程放大的基本规律、特别是在较低温度(180-250℃)下F-T的重质产物可以充当液相介质的可能性,由于对三相悬浮床系统在基本流体力学和F-T工艺基础问题方面认识的局限性,早期的技术开发采用很低的空塔气速,致使反应器的处理能力不适用于规模化的工业生产。
除了F-T合成反应本身的工艺技术约束之外,在F-T合成的气-液-固三相悬浮床反应器开发方面起到重要作用的是对该类反应器操作状态下的流体流动模式和诸如空塔气速、三相鼓泡反应器内径的有效关联研究结果,1980年代后期到1990年代,一些研究结果事实上已经指明了满足工业化反应器放大设计的中间试验装置的最小尺度,也使开发者认识到过低的反应器高度和过低的入塔气速对工业化装置的开发缺乏工程指导意义。1990年代,南非Sasol公司建设并运行了内径为1米的中间放大试验和内径为5米的工业规模的三相悬浮床F-T合成反应器,南非Sasol公司的上述开发基本实现了这类反应器在工业中应用的目标。
用于F-T合成的三相悬浮床反应器技术的开发主要基于早期的三相床中可以进行F-T合成反应的基本概念验证,围绕强化操作以及实现连续稳定运行方面的有效的技术展开的,有关技术发展的背景主要有如下几个方面:
1、气体分布问题:气-液-固三相F-T合成反应器的气体分布器的研发与反应器本体的开发紧密相关,学术界所关注的主要是如何使气体分布均匀,并尽量产生小气泡,忽略了在高度湍流条件下大型反应器的气体分布器对气体的分布只对该分布器上方有限空间起作用,整个床层是靠湍流和内构件实现再混合-分布这一基本事实。在实际反应器应用中,气体分布器的作用除了将反应器入口气体均匀分布在反应器底部的截面上的作用以外,在很大程度上要求在反应底部的催化剂通过气体分布器喷射出的气体的搅动而不发生沉积,气体分布器不会因为偶然的浆液进入而造成堵塞,这方面的问题在公开的资料中没有得到考虑,例如:USP5905094涉及了一种气体分布器,该分布器采用了在反应器封头上方设计的隔板上加工一系列口径向上放大的开孔,这种设计主要的问题是开孔加工难度较大、同时对隔板的强度问题没有明确的设计补强方法,同时当反应器入口气体偶然停止时,催化剂颗粒在上述孔中形成堆积,系统再启动将遇到困难,部分孔可能不会开通而引起反应器内气体分布不均匀等等,为此该技术的实施需要有一系列的配套手段,以保证反应器在各种情况下不发生对运行的破坏性后果,但还没有有关这方面需要配套的工艺措施的公开资料;涉及了一种总体结构在工程设计手册上可以查到的较为简单的气体分布器设计方案,气体的导入分布也是依靠在反应器封头上方设置隔板的方式实现的,气体通过连接在一次分布管件上向下的小型喷嘴喷射进入隔板上方的三相反应区,这种设计的主要的问题是喷嘴加工仍然较为复杂,同时喷嘴的堵塞风险仍然很大,并且没有相应防止堵塞措施的公开资料。
2、换热系统的有效设计:F-T合成过程是一个典型的能源形式的转化过程,从能量转化角度,转化的合成气一方面形成烃类产物,同时会有输入反应器能量的15-25%转化成反应热,为此在F-T合成中进行有效的换热设计以保证,
(1)实现反应器床层的有效温度控制;
(2)实现反应热的有效移出;
(3)在启动时实现热量的供入。在大型悬浮床反应器中,换热器的分布原则的最基本工艺要求是对反应器内的流体力学分布有利,同时能够实现反应热的有效移出。F-T合成的悬浮床反应器的换热构件没有系统可实施的设计方案,例如USP6201031B1专利中示意的采用多重U型管串联的结构,以及专利CN1233451C提及的螺旋盘管式或迂回式多程换热管以及有些专利提及列管式结构等均存在反应器中布置困难的问题,换热器件结构和布置不当将引起一系列问题,其一是对流场形成不均匀干扰,其二是容易形成局部空间的过度阻塞不利于浆液循环,其三是换热面积布置受到限制进而影响反应热回收效率,其他的问题诸如结构震动问题、应力集中问题等均没有形成系统的方案。
3、液体石蜡产品和催化剂的有效分离:F-T合成中的重质产物在反应条件下处于液态,并在三相悬浮床中会不断积累,必须将其在线地移出反应器外。由于该重质液态石蜡与F-T合成催化剂以浆态的形式存在,为此实现这种操作的主要手段是需要进行液固的连续分离。由于F-T合成反应所用催化剂粒度一般为:30-200微米之间占有90%以上,适宜于采用过滤方法实现液-固分离。液-固的过滤分离问题是一个十分传统的工程问题,在标准的化学工程手册和出版物中均可找到作为标准单元操作的各种过滤分离技术,其中,适合于三相悬浮床(浆态床)反应器中催化剂分离的技术是管式压滤(烛型设计或列管式设计)。与传统过滤器相比,反应器自然地作为压滤的高压端容器,多孔过滤管件外表面用来承载滤饼、并通过处在湍流状态下三相流体的冲刷和采取反吹清洗等措施达到滤饼进入三相床继续发挥正常的催化作用。在公开的专利中,如USP6462098B1针对特定的F-T合成催化剂和反应器体系对过滤器的工艺原理进行了验证,所采用的过滤装置类似于烛型结构,下部安装引出管,用于将分离后的重质蜡导出反应器外,同时也可以实施反吹清洗操作;报道了一套自动过滤装置,采用列管式结构,配有上下引出管件,上部用于反吹,下部用于将过滤液导出,这种过滤设施可以设置到5层。在上述过滤装置的技术资料中,没有提及这种过滤装置在反应器中集成时的结构优化设计以满足如下合成反应器中重要的工艺要求:
(1)过滤装置的结构对流体力学条件的影响进而对过滤环境的影响;
(2)由于过滤装置的固定和引出导管等对流场的干扰,有可能使得过滤装置部分过滤介质暴露在持久的大气泡中从而使得过滤失效问题如何避免;
(3)过滤组件的组合结构如何对过滤器组各过滤原件实现流体力学的均匀分配;
(4)如何有机地集成反应器中的过滤分离构件和换热构件,以避免过滤区域较弱的移热功能而使过滤区域、特别是滤饼上的催化剂处在过高温度、加速整个反应床层催化剂的失效问题。
4、三相反应器中的液-固强化混合问题:对F-T合成反应器,由于换热器、过滤分离装置等内构件在整个反应器空间中的结构没有完整的设计方案,因此,公开资料中对流体力学特性强化手段的有效性是不同的。沿反应器轴向往往会分段设置不同的内构件,这些内构件的合理设置会使一些流体力学特性得到强化,避如气泡尺度分布会更有利于合成反应的有效进行,沿反应器截面径向的流体力学分布特性得到改善等等。但是,这些内构件的存在使流场在反应器轴向存在很多复杂的结构因素,在一段内构件的主体部分流场结构具有均匀性,在两端附近往往会有流场结构的蜕变问题,造成在三相反应区内的局部循环,影响诸如催化剂在整个床层分布的均匀性、以及换热和分离原件的有效性。专利USP5382748、USPRE37229E、USP6201031B1报道的有关设置垂直下降管能够增强反应器轴向的浆液循环,有利于催化剂颗粒在反应器轴向的均匀分布,验证了三相流体化反应器通用原理的正确性,资料中没有考虑反应器整体结构和下降管布置以及结构的关系,不具备优化设计的基本要求。
5、反应器出口的雾沫夹带导致冷凝产物固含量偏高的问题:在过去的研究中,反应器顶部的设计上没有合理的方案,这可能造成的问题是反应系统的气相流股中液相和催化剂夹带过多,后续冷凝的重质油中固含量偏高,影响产品加工技术的有效实现,造成了产品二次净化的难度,特别是在反应器气-液界面偶然发生过多的泡沫甚至液泛时,还没有系统解决夹带问题的设计方案,USP6265452B1报道了在反应器气相空间设置多块类似于精馏塔板的构件来解决固体夹带以及抽出部分冷凝物的方案,造成反应器的结构更加复杂,同时这些塔板能否在固体夹带情况下正常操作没有得到验证,特别是夹带的固体将使溢流堰等构件失效,一旦发生液泛事故(系统突然失压大于0.1兆帕将会发生),后果将更加严重。
《用于费-托合成的气-液-固三相悬浮床反应器及其应用》发明考虑到三相悬浮床操作时的流体力学特性以及所使用的F-T合成催化剂的特点,提出采用湍流操作状态,同时反应器的合理适用高度在30米以上,工业可操作的反应器内径在0.28米以上,同时考虑到解决液-固分离、换热和反应器的温度控制、气体分布以及消除皂沫效应和控制反应器出口气体流股中雾沫夹带等一系列技术问题,实现系统配套装置的优化布局,从而发明了适用于F-T合成的三相悬浮床反应器及其相关的配套装置。
该发明的特点是:
(1)采用高度湍流的操作条件,可以使三相悬浮床F-T合成反应器突破气体处理量的制约,增加其产能,这种突破是基于配套该发明的催化剂(见中国专利:CN1128667C、CN1159098C、CN1245255C、CN1260007C、CN1199730C、CN1270822C,以及依上述专利而后续改进的F-T合成催化剂),催化剂优良的转化能力使得实现上限气体处理量(合成回路90-96%的合成气转化率)有了保障,同时催化剂在三相悬浮床浆液中的重量浓度最大不超过35%(采用上述催化剂一般在10-25%),这是确定反应器口径-生产规模的基本约束条件;
(2)入口气体分布器的简单结构以及配套系统实现了气体分布、浆液有效流化、和防止任何情况下分布器的堵塞。
(3)灵活的换热-温度控制系统可保障浆态床反应器中进行充分有效的F-T合成反应;
(4)结合反应器整体结构的、分布在一层的高效液-固分离系统可以实现有效的固-液分离,滤出的F-T重质产物中固含量小于100ppm、一般在5ppm以下的情况下,滤饼中的催化剂仍然处于高活性状态、被清洗并回到三相床层继续实施催化作用;
(5)三相悬浮床F-T合成反应器设计采用强化的催化剂分布和有效的雾沫分离等措施。上述特点保证了该发明的F-T合成反应器在可靠完成F-T合成各种工艺技术功能的同时,简化了结构和操作、降低了反应器的造价和操作成本。
该发明的三相悬浮床(也称“浆态床”)F-T合成(Fischer-Tropsch合成,简称F-T合成)反应器及其配套系统,在工艺和工程上进行了严密的优化,方案在中试规模反应器、和冷态大型试验装置中进行了系统验证、结合计算流体力学(CFD)研究,形成了完善的反应器及其配套系统方案,反应器和配套系统的优化配置保证反应器可以实现长期连续运行的基本目标。
《用于费-托合成的气-液-固三相悬浮床反应器及其应用》是提供一种适合于大型F-T合成过程的反应器系统,以及使用所属反应器进行F-T合成的方法。
《用于费-托合成的气-液-固三相悬浮床反应器及其应用》发明的反应器系统包括适用于费-托合成的气-液-固三相悬浮床反应器及其配套系统,是一种用于费-托合成的气-液-固三相悬浮床反应器,该反应器用于合成气(CO H2)的费-托合成反应,所述反应是在费-托合成催化剂存在下,采用低温浆态床工艺或高温浆态床工艺合成费托合成油,该反应器主要包括:
1、垂直方向的直桶体高度为25-45米的反应器本体;
2、设置在反应器底部的直接导入型或隔板分布型气体分布器;
3、设置在反应区下部的主换热器和可以选择配置的跨越三相反应区与气相区上部的主换热器,以及在分离器区域上部设置的辅助换热器;
4、多组固体催化剂-液体重质产物分离器;
5、用于改善催化剂沿反应器轴向分布的一组或多组导流管;
6、设置在反应器内顶部的雾沫分离装置;
7、与上述设备配套的系统,包括设置于反应器底部用于处理沉积浆液的辅助系统;和任选地设置于反应器上部出口处的预冷凝-雾沫分离系统。
该发明反应器的反应器本体是根据设计的生产规模、所使用催化剂的特点以及操作工艺约束条件确定尺寸的一个圆柱筒体,该筒体的内径主要依据生产规模要求,在设计工艺条件下的气体通量所确定,主要的约束条件为:
(1)反应器内气体通过气-液-固悬浮床形成气-液-固鼓泡搅拌湍流状态,造成充分的气-液-固传递环境,强化反应过程中气-液-固传质和传热过程,一般要求气体的表观气速大于0.20米/秒;
(2)大的气速有利于增加反应器的生产负荷;
(3)反应器的生产负荷还应满足传热条件的限制,生产负荷越大,传热负荷越大,会造成反应器内传热面积设置增加从而增加反应器的内部结构的复杂性或造成副产蒸汽压力等级的降低;
(4)在有效的强化操作条件下,气速的上限还会受到反应器内部上端出口处不形成过多的液固夹带为宜,该发明要求入塔表观气速Uin小于0.50米/秒;
(5)过高的气速和过大的传热面积也将造成催化剂的物理磨损加剧。在上述约束条件下,大型的F-T合成反应器的表观入塔气速Uin一般为0.3-0.5米/秒。反应器筒体内径可以由下式确定:
其中Din是反应器筒体内径(米);G°是在反应温度和压力下,反应器底部入口处的气体表观体积流量(立方米/秒),一般由单台反应器的生产规模确定;Uin是入塔表观气速(米/秒);As是在反应器中的换热器等内构件在反应器某一截面上所占的面积(平方米);π=3.1415926。
该发明用于F-T合成的三相悬浮床反应器本体在垂直方向的直桶体高度为25-45米,优先选择在28-40米范围,适合的最大表观气速(反应温度和压力下,以反应器底部截面为基础)为0.50米/秒,优选表观气速在0.35-0.45米/秒范围内,适用的反应器内径在2-15米范围,优选的内径在4-12米范围。
该发明三相悬浮床反应器的反应器高度、最大表观气速和反应器内径可根据用于悬浮床的系列F-T合成催化剂的转化能力和反应器内部的流体力学行为来确定的,三者之间有相互制约和适应的关系,在优先选择的条件范围内,该反应器产能以C3 烃产量计为,内径5米时产能为16-25吨/小时,内径8米时产能为45-70吨/小时,内径10米时产能为70-100吨/小时,内径为12米时产能为90-140吨/小时。
在该发明反应器的下部设置有气体分布器,该气体分布器可选用两种设计方案:直接导入型或隔板分布型。
所述的直接导入型气体分布器设置于反应器底部封头的表面,由多组环形结构组成,其向下的侧面与反应器本体的底部封头的内表面上方保持10-200毫米的距离,优选的,所述气体分布器用于分布气体的元件向下侧面与反应器本体所属的底部封头的内表面上方保持10-200毫米,优选30-150毫米的距离;该气体分布器在每个环形结构上带有向侧下方开设的气体喷射孔的管件,气体喷射孔径在1.0-8.0毫米范围,优选所述气体喷射孔的孔径为1.5-5毫米;该喷射孔可使气体以20-100米/秒的气速冲刷反应器底部封头内表面,优选的,所述气体分布器向侧下方开设的气体喷射孔的孔径为1.5-5毫米;所述气体喷射孔可使气体以30-90米/秒的气速冲刷反应器底部封头的内表面;同时在每个环形元件之间设置有与封头内表面连接有平行于反应器轴向的环形导流挡板,高度为10-300毫米,以保证最终上升气流垂直向上流动;在一个圆或扇形区域的所有上述元件集总后,通过多根导管与该区域的导入反应的进气管连通,形成一组气体分布器。
进一步地,所述的气-液-固三相悬浮床反应器可包括1-8组所述的气体分布器,并在反应器整个底部形成均匀分布的气体分布构件。在一个圆或扇形区域的所有元件集总后,通过多根导管与该区域的导入反应的进气管连通,形成一组气体分布器。同样的1-8组气体分布器形成反应器整个底部均匀分布的气体分布构件,为此,大型反应器的气体入口导管等分成1-8路实现对各组分布元件的气体导入。气体分布器的低端设置向下连出反应器外部连通于设置在反应外部的一个小型容器,用于清除进入分布器的液体和催化剂颗粒,消除气体分布器堵塞的问题。
该发明所述的气-液-固三相悬浮床反应器中,所述的气体分布器可以是隔板分布型的气体分布器,该分布器的特征在于:在底部封头上部的反应器截面设置隔板,将反应器底部封头隔出一个自由空间,在隔板上侧的平面上布置分布管件,分布管件通过向下的过渡管与隔板紧密连接、并穿过隔板与该自由空间连通,反应器的气体入口位于隔板下部与该自由空间连通,进入该自由空间的入口气体导管向下对准封头中心内表面。漏入隔板型分布器的液体和催化剂颗粒直接进入下部自由空间,通过设在反应器封头最底部的连通管件导出反应器外,从而保证在任何情况下气体分布器不发生堵塞问题。
如前所述,反应器中经常发生浆液返流并在分布器中积累的问题,《用于费-托合成的气-液-固三相悬浮床反应器及其应用》采取了相应的措施以清理该积累浆液,保证分布器在任何情况下不被堵塞。
为克服反应器中可能发生的浆液返流并在分布器中积累,即浆液沉积的问题,该发明采取了相应的工艺措施,对该积累浆液进行清理,以保证分布器在任何情况下不被堵塞。为此,在该发明反应器底部的气体分布器设置了处理沉积浆液的辅助系统,该系统的特征是将气体分布器的最低点与一个较大空间连通,该空间设置液位检测设施,并能有效实施将沉积浆液导出反应器。另外,也可以将所述较大空间设置于反应器外。
具体的,为反应器设置的用于处理沉积浆液的辅助系统包括:在分布管集总管的最低部设置连通管引出反应器外后使之与受液容器连通,并由液位控制系统调节和控制。或者,将底部封头空间作为受液容器,并配置一套积液液位指示和控制系统,以便在积液达到一定水平时,通过自动控制或手动控制放出积液。
对于不同类型的反应器而言,例如不论是直接导入型,还是隔板式的气体分布器,可以对上述消除浆液积累的装置任意地进行选择。
在该发明在反应器内设置的换热内件可以是一段或两段主换热器。换热器的设置主要是根据反应器中进行F-T合成反应所产生的反应热效应和反应器的操作条件设计的,换热管内采用强制循环的带压沸腾水(生产蒸汽)作为换热介质,反应热以副产水蒸气的方式间接移出反应器的气-液-固悬浮床层。当采用一段主换热器时,反应区应主要限制在换热器分布的区域,并可加设小型换热构件组,起到对液-固过滤分离装置所占空间的温度调节的作用,或在气-液界面附近上方加设同时起气-液(固)分离作用的换热构件。
在换热元件的结构方面,首先考虑换热器设计的基本工艺约束,包括工艺对换热面积的要求、换热管内流速(水 蒸汽两相)、换热管内的压力(产生饱和蒸气的压力和温度)、反应器床层温度、反应器空间被换热管所占比例的大小等。
在该发明所述的气-液-固三相悬浮床反应器中,所述的反应器可设置一段主换热器,也可以采用两段主换热器。在采用两段主换热器时,上部的主换热器设置在液体蜡-催化剂过滤分离区域上部。设置于反应器下部的主换热器的底端在气体分布器上方0.1-3米处,优选所述下部主换热器的底端在气体分布器上方0.3-2.5米处。
当采用两段主换热器时,上部换热器设置在液体蜡-催化剂过滤分离区域上部。在过滤分离构件之间的较大空间上,考虑设置换热元件,在两段主换热设计方案中,这可以与上部换热器结合起来考虑;在一段主换热器设计时,过滤区设置几组小型换热组件作为辅助换热器,以保证过滤区域的温度控制。
在该发明所述的气-液-固三相悬浮床反应器中,所述换热器可采用常规的换热元件,例如U型管换热元件,或是采用中心套管(内管为下降管,环隙为上升管)外加上升管的换热元件。
根据本领域的常识,在该发明所述的气-液-固三相悬浮床反应器中,要实现如此大规模的换热,必须采用多组换热组件,该换热组件由所述的多组换热元件通过一组集总管件组成,在换热组件的集总管两端设置支撑元件,支撑元件安装在反应器壁的支撑构件上,形成悬挂结构,在结构上避免应力集中问题,多组换热组件形成一段换热器。用于移出反应热的冷却介质是热水-蒸汽。该发明强调换热器的有效设计以最大限度地回收反应产生的热量。
在该发明的气-液-固三相悬浮床反应器中,还包括用于分离固体催化剂和液体重质蜡产物,并移出所述的重质蜡产物的液-固过滤分离装置。所述的液-固过滤分离装置用于分离固体催化剂和液体重质蜡产物,并移出所述的重质蜡产物;所述的过滤分离装置垂直布置在反应器中上部,在只有一个主换热器时,该过滤分离装置在主换热器上方;在有两段主换热器的情况下,该过滤分离装置设置于两段主换热器之间;
每组过滤分离装置由多根过滤管件,优选由12~60根过滤管件组成过滤管束,每根过滤管的两端通过过渡连通导管按流体均匀分配原则与集总管连接引出反应器外,下端导出管和外部排蜡-稳压系统连接,用于移出过滤出的蜡液;上端导出管和清洗系统连接,用于过滤管的在线清洗;
和所述过滤管件可以是各种金属过滤管,优选可反吹清洗的金属过滤管,该过滤管的流体通过孔径为1-50微米,过滤部分长度为0.3-3.0米;通过上述过滤装置分离后可使液蜡产物中的催化剂含量降至100ppm以下。
过滤元件是各种可以反吹清洗的金属或陶瓷过滤管,根据催化剂颗粒在反应运行过程中的尺度分布,要求其过滤元件的孔径小于90%以上催化剂分布的颗粒尺度,一般选择商用的孔径在1-50微米的烧结/缠绕金属丝网或粉末烧结多孔金属、多孔陶瓷作为过滤元件的过滤介质。
优选的,在该发明所述的气-液-固三相悬浮床反应器中,所述的液-固过滤分离装置优选安排在靠近反应器壁的环形区域。
优选的,每组过滤分离装置由12~60根过滤管件组成过滤管束,更优选的由20-50根过滤管件组成。过滤管件的过滤部分长度为0.3-3.0米,优先选择长度为0.5-2.5米的范围;所述的过滤管件可采用商用1~50微米孔径的金属过滤管件,优先选择孔径10-30微米的过滤管件。
过滤装置的上端导出管用于过滤管的在线清洗,采用气体或干净的液体作为清洗介质,下端导管用于移出过滤出的蜡液。过滤器区还可选地设置有垂直管束组成的假件,用于保持过滤器周围的高度湍流状态,以提高过滤效率,该发明的过滤装置可以保证稳定连续地使F-T重质产物,即液蜡产物中的催化剂含量降至100ppm以下,优选方案滤出的F-T重质产物中固含量小于50ppm,更优选小于5ppm。
由于滤饼中的催化剂仍然处于高活性状态,因此可将其清洗并使之回到三相床层继续实施催化作用。
在所述的气-液-固三相悬浮床反应器中,所述的过滤分离装置垂直布置在反应器中上部,在下部换热器上方或两段换热器之间,优选将所述的液-固过滤分离装置安排在靠近反应器壁的环形区域。
该过滤装置所用的过滤元件是各种可以反吹清洗的金属或陶瓷过滤管,根据催化剂颗粒在反应运行过程中的尺度分布,要求其过滤元件的孔径小于90%以上催化剂分布的颗粒尺度,一般选择商用的孔径在10-30微米的烧结/缠绕金属丝网或粉末烧结多孔金属、多孔陶瓷作为过滤元件的过滤介质。
根据试验结果,在三相床操作条件下,过滤区需要冷却以保证温度与换热区相同,为此,上部换热器的设置使得在过滤环型区围绕的中心空间布置了换热管件。这样的结构同时起到在过滤区的气体流通和分布,保证三相流动对过滤元件的有效冲刷,提高过滤效率。同时根据中间试验的结果,这样的过滤空间在大型反应器中足够分布实际运行过滤器面积的3-5倍的过滤器组,考虑到过滤器较易损毁,设计中考虑了过滤面积适当的富裕量和在反应器结构方面实现方便维护的问题。在设计一段主换热器的情况下,过滤器区域的移热需要单独考虑小型换热器构件组依据过滤器的排布进行合理配置。
对于在一组中的过滤元件的安排,根据中间试验的结果,过滤管束的管外表面的最小间距应在20-50毫米之间,过小的间距会造成过滤管之间形成滤饼架桥、难以靠反清洗和冲刷清理干净,使过滤表面部分失效,影响过滤负荷的提高。
为确保催化剂和重质产物蜡过滤分离的需求,还可在该发明反应器外设置与上述内部液固分离系统配套使用的外部设施。这些设施包括为反应器内过滤分离器有效运行而设置的器外滤出蜡接受-和过滤稳压系统,和与反应器内过滤分离器配套使用的、设置于反应器外的清洗系统。反应器内的过滤分离装置通过集总管与反应器外的排蜡-稳压系统和清洗系统连接,所述过滤分离装置的下端导出管和外部排蜡-稳压系统连接,用于移出过滤出的蜡液;上端导出管和清洗系统连接,用于过滤管的在线清洗。
将所述反应器内、外的所述设施同时使用可使催化剂和蜡的过滤分离达到非常好的效果,例如使滤出的F-T重质产物中固含量小于5ppm,并可使过滤出来的催化剂得到有效利用。
为了加大液体循环量、促进催化剂均匀分布,在该发明的反应器中设置一组或多组液体导流管来增强整个三相床层的浆液的循环量,避免由于较高的反应床层和内构件在反应器中分段布置带来的局部循环,改善三相悬浮床反应器中催化剂的轴向分布,同时导流管在两段换热器之间还起到热交换作用,有利于强化整个反应器传热,保证下部换热器与反应器底部封头之间无换热器的空间内的热交换,避免底部入口附近空间的过热或飞温。
所述的导流装置不仅可以加大液体循环量、促进催化剂均匀分布,而且可以克服由于分段内构件结构形成的器内局部循环,并能耦合两段换热器负荷。所述的导流装置可以有一组或多组,设置在反应器三相悬浮床层内靠近反应器壁面的位置,用于两段换热器热耦合并用来加大悬浮液循环量以达到改善催化剂沿反应器轴向分布的目的。
该导流管件的设计原则是:(1)合理的导流管内径确保反应器的液-固相的大量循环;(2)导流管的循环可以有效地形成催化剂在反应器轴向分布的改善;(3)导流管的轴向位置考虑两段换热器之间的有效循环;(4)导流管从下部换热器向反应器底部的绝热空间供应大量的液体以实现下部换热器对反应器入口处的移热作用。
为提高气、液、固三相的分离效率,特别是为了降低冷凝产物中催化剂的含量,在该发明的气-液-固三相悬浮床反应器上部还设置了雾沫分离装置。所述的雾沫分离装置包括设置于反应器内上部气相区的一级雾沫分离装置,和设置在反应器出口导管处的二级雾沫分离装置。
具体地,反应器内上部设置的一级雾沫分离装置是在反应器上部气相区,在上部换热器的上端,利用集总管的排布形成回流冷凝挡板结构,结合换热器对气流股的冷凝作用,对气流夹带的含有固体催化剂的雾沫进行一次分离;在反应器出口导管处设置有二级雾沫分离装置,其结构为在反应器出口导管处连接了一个筒状冷凝器,该冷凝器由1-8层紧密排列的换热管围成一个筒状结构,下方设有锥形收集器,当携带雾沫的气体流股经过换热管束的缝隙冷凝碰撞后,雾沫粒度长大并在换热管壁面被捕获,然后形成的液膜流入底部的锥形收集器,最后通过设置在锥底的回流导管向下流至上部换热器顶部的集总管组成的一次分离挡板上方,在此形成较大的液体回流使分离效果增强。
通过采用上述雾沫分离装置,可大大提高分离效率,可使在反应器外的较重的一次冷凝产物中的催化剂含量达到2ppm以下,为F-T合成产物的进一步加工利用提供保障。
为进一步提高气、液、固三相的分离效率,降低冷凝产物中催化剂的含量,该发明的反应器还任选地设置了在反应器外部的相应配套装置,即设置于反应器上部出口处的预冷凝-雾沫分离系统。
关于上述预冷凝-雾沫分离系统,作为该发明反应器的外部配套设施,该系统设置于该反应器出口处,该系统主要包括预冷凝器、气-液分离器、小型液体接受容器和配套的阀门;通过该系统的气流可降温5-10℃,其下游的冷凝产物中固含量可小于2ppm。
具体地,在该发明反应器上部还可任选的设置位于反应器出口的预冷凝-分离系统,以对从反应器导出气体进行预冷凝。其特征在于,使得气流股降温5-10℃,该预冷凝器是一个小型列管式换热器-余热锅炉系统,冷凝后的气流股经过一个气-液分离器后送入下游,该分离器下部与一个小型液体接受容器连通,该连通管上设置一个手动切断阀和一个自动切断阀,该液体接受容器下部与反应器通过切断阀连通,其中的液体可以被间断地压入反应器三相床层上部,或可选低压入污染产品中间储罐进一步处理,这种预冷凝系统确保下游大量可冷凝产物固含量小于2ppm,其作用与上述设置于反应器内顶部的雾沫分离装置的作用类似。
在实际应用中,此预冷凝-分离系统和反应器内顶部雾沫分离装置可择一使用或共同使用。
优选的,该发明气-液-固三相悬浮床反应器的六个主要部分及其布局如下:(1)垂直方向的直桶体高度为25-45米的反应器本体;(2)设置在反应器内底部用于分布气体和防止催化剂在反应器底部沉积的直接导入型或隔板分布型气体分布器,和与所述的气体分布器配套使用而设置的处理沉积浆液的辅助系统;(3)设置在整个反应区的下部的主换热器,和可以选择配置的、跨越三相反应区与气相区的上部主换热器;或者在只设置一段主换热器的情况下,在分离器区域上部设置的换热构件深入到分离器组间的、用于过滤区移热的辅助换热器;(4)设置在下部换热器上方或两段主换热器之间,并分布在反应器壁面附近环形区域的多组固体催化剂-液体重质产物分离器;(5)设置在反应器三相悬浮床层内、靠近反应器壁面的,用于改善催化剂沿反应器轴向分布的多组导流管;(6)与上部主换热器或辅助换热器集总管结合的一级冷凝型雾沫分离装置和位于上部出口处的二级雾沫分离装置,和任选地设置在反应器上部出口处的预冷凝-雾沫分离系统;并且,该反应器还任选的设置有与反应器的上述构件配套使用的其它反应器外配套装置。
在该发明所述的气-液-固三相悬浮床反应器外还设置了与上述内部设施相应的配套设施。这些设施包括例如:(1)为反应器内过滤分离器有效运行设置的器外滤出蜡接受-和过滤稳压系统;(2)与反应器内设置的液固分离系统配套使用的、设置于反应器外的清洗系统;(3)将反应器内上部气体导出的、与上部换热构件耦合的回流分离构件,例如设置于反应器出口的预冷凝-分离系统等;和(4)为反应器底部的气体分布器设置的处理沉积浆液的辅助系统。
具体地,上文所述“与反应器的上述构件配套使用的其它反应器外配套装置”是指下述外部配套设施:
(1)为反应器内过滤分离器有效运行设置的器外滤出蜡接受-和过滤稳压系统;
和(2)与反应器内设置的液固分离系统配套使用的、设置于反应器外的清洗系统。
该发明反应器为蜡过滤设计了外部配套设施,为器外滤出蜡接受-过滤稳压系统,该系统主要包括液体蜡接受罐及其液位调节系统、气体压力缓冲罐、稳压罐和精密压力控制系统;该系统的启动可采用自动或手动两种方式。
具体地,在F-T合成过程中,反应器内的三相床层的液位必须维持在一定范围,以此为前提,设置在反应器内的多组过滤装置和器外的辅助系统可按适当的程序进行液体蜡和催化剂的分离。
在反应器运行过程中,F-T液体蜡和部分夹带的气体通过导出管和开启的切断阀进入到液体蜡接受罐,并在其中完成气-液分离,液体停留在该接受罐的下部,气体经过导管进入气体压力缓冲罐;下部的液体送到下游进一步处理;通过液位调节系统使液蜡接受罐中保持一定的液位。维持此工艺正常运行所需要的压力调节功能由精密压力控制系统完成。所述的气体压力缓冲罐内的积液由其中设置的自动控制系统控制适时排出。
该发明反应器还设置了与反应器内的液固分离系统配套使用的、设置于反应器外的清洗系统,所述的清洗系统包括气体清洗系统和/或液体清洗系统。
所述气体清洗系统的主要设备包括气体压缩机、气体加热器和带有加热保温功能的气体缓冲罐,可用合成气、氮气气体等气体介质作为清洗介质;优选以来自F-T合成的干净合成气为清洗气体。
所述液体清洗系统的主要设备包括热油泵和带有加热保温功能的清洗液体计量罐,可用液体石蜡、合成蜡等作为清洗介质,优选以合成蜡为清洗介质,更优选采用在下游加氢以后沸点大于300℃,小于380℃的F-T馏分油作为清洗介质。
具体地,关于上述清洗系统,可采用合成气、氮气气体介质或液体石蜡、合成蜡的液体介质,优先选择合成气和合成蜡介质,且合成气和合成蜡介质作为清洗介质可互作备用,交替使用。
所述的清洗系统包括一台提供高于(最大0.8兆帕)反应器压力的合成气的压缩机,气体加热器和气体缓冲罐,该罐与该发明反应器中所述的分离装置的上部引出管连通,连通管线配置至少一个自动切断阀用于清洗气源的启用与关闭。包括分离出的液体产物的接受容器和与此接受容器上部气相通过管道连通的气体压力缓冲容器,该压力缓冲容器顶部设置带有节流孔板的从合成回路引入的连续供气管线和带有自动调节阀以及自动切断阀的排放气体管线,以实现对过滤压差的精密控制;该压力缓冲容器一方面起稳定过滤器清液侧压力的作用,另一方面对进入液体接受容器的过滤液释放气中夹带的重质蜡微滴起到分离作用,以使上述排气管线上的调节阀不受重质冷凝物的干扰。
当采用液体清洗时,该发明优先采用可以方便得到的加氢后的F-T馏分油(如300-370℃馏分)作为清洗介质,此时,同样地需要一台液体介质输送泵和一个液体缓冲罐,实现对过滤元件的在线清洗。
该过滤分离系统可以方便地通过过滤器组的启用数量、过滤时间长短以及过滤压差的调整来控制反应器内的液位和实现产物分离。
在《用于费-托合成的气-液-固三相悬浮床反应器及其应用》所述的气-液-固三相悬浮床反应器中进行费-托合成反应时所使用的催化剂可以是用于此类反应的常规催化剂,包括现有技术中已有的此类催化剂或它们的改进型号,或用于此类反应的新催化剂,例如适用于反应温度为240-250℃的低温浆态床工艺使用的铁基催化剂,其性能可达到0.3-0.6kgC3 /kgh,甲烷选择性为2.0-5wt%,C2-C4选择性4-12wt%;以及适用于反应温度为250-290℃的高温浆态床工艺使用的铁基催化剂,其性能可达到0.4-0.9kgC3 /kgh,甲烷选择性为2.0-4wt%,C2-C4选择性3-10wt%。
例如,中国科学院山西煤炭化学研究所发明,中科合成油技术有限公司生产的、用于悬浮床F-T合成的系列浆态床催化剂,所述催化剂可适用于较低温度(反应温度为240-250℃)的低温浆态床工艺,也可适用于较高温度的(反应温度为250-290℃)的高温浆态床工艺。低温浆态床工艺使用的专利铁基催化剂可参见中国专利:CN1128667C、CN1159098C、CN1245255C、CN1260007C及其后续改进的催化剂;以及高温浆态床工艺使用的专利铁基催化剂可参见中国专利CN1199730C和CN1270822C及其后续改进的催化剂。但该发明所涉及的费-托合成反应催化剂并不局限于上述催化剂,还包括现有技术中所有的用于费-托合成反应的催化剂,例如依据上述催化剂而改进的浆态床催化剂,以及后续新的F-T合成催化剂系列。
基于配套使用的上述催化剂具有优良的转化能力,该发明的反应器可达到上限气体处理量(合成回路90-96%的合成气转化率),同时催化剂在三相悬浮床中的重量浓度最大不超过35%,采用上述催化剂一般在10-20%,这是确定反应器口径-生产规模的基本约束条件。
与现有技术已知的同类反应器相比,《用于费-托合成的气-液-固三相悬浮床反应器及其应用》反应器具有的特点:
1、入口气体分布器的简单结构及其配套系统实现了气体分布、浆液有效流化,并可防止任何情况下分布器的堵塞;
2、灵活的换热-温度控制系统可保障浆态床反应器中进行充分有效的F-T合成反应;
3、结合反应器整体结构的、分布在一层的高效液-固分离系统可以实现有效的固-液分离,滤出的F-T重质产物中固含量很小;且滤饼中的催化剂在线回收到反应器床层、并保持高活性;
4、和三相悬浮床F-T合成反应器设计采用强化的催化剂分布和有效的雾沫分离等措施,保证了该发明的F-T合成反应器在可靠完成F-T合成各种工艺技术功能的同时,简化了结构和操作、降低了反应器的造价和操作成本。
《用于费-托合成的气-液-固三相悬浮床反应器及其应用》的反应器可用于在催化剂的作用下,和在适合的温度和压力下,采用低温浆态床工艺或高温浆态床工艺将合成气(CO H2)转化为烃类和少量有机含氧化合物(甲醇、乙醇、乙酸、乙醛、丙酮、乙酸乙酯等)的F-T合成过程。
因此,该发明另一目的是提供了一种应用该发明的反应器有效进行费-托合成的方法,该方法是在该发明的反应器中,在费-托合成催化剂存在下,于所需的温度和压力下使合成气进行费-托合成反应。
充分考虑到三相悬浮床操作时的流体力学特性以及所使用的F-T合成催化剂的特点,《用于费-托合成的气-液-固三相悬浮床反应器及其应用》反应器采用了湍流操作状态,反应器的合理适用高度在30米以上,工业可操作的反应器内径在0.28米以上,同时考虑到解决液-固分离、换热和反应器的温度控制、气体分布以及消除皂沫效应和控制反应器出口气体流股中雾沫夹带等一系列技术问题,实现系统配套装置的优化布局。
例如,在进行为获取工业化流程数据为目的小型F-T合成系统设计时,要实施F-T合成的结果能够对应大型化的流程数据(包括反应器内部流体力学行为、反应器中设置的换热部件、分离部件、气体分布部件对反应造成的结果)有对应关系,最小反应器内径应大于0.28米,一般选用0.3米以上,而过低的反应器高度将会使反应器的稳定运行和液位的准确控制、防止液泛造成对运行结果的破坏性控制变得困难,因此,反应器高度应至少选用30米的规模。对此目的的项目,过大的反应器尺寸只能增加项目的运行成本。
又如,一个工业化过程的设计需要尽可能增加单台反应器的生产规模,而经济上理想的规模应该在50万吨/年可液化产物以上,但同时受到反应器制造和现场条件的限制,为此,对该发明的反应器的规模确定需要按照需求以及各方面的实施工程条件进行。
按照上述设计思路,经过应用小型反应器和过渡性工业示范项目的中型反应器进行开发煤制油产业的各种试验,取得了良好的结果。
图1是《用于费-托合成的气-液-固三相悬浮床反应器及其应用》大型三相悬浮床反应器结构和工艺原理示意图。
图2是直接导入型气体分布器在反应器底部的连接结构侧面示意图。
图3是直接导入型气体分布器在反应器底部截面的布置图。
图4是直接导入型气体分布器在反应器底部截面的布置图,
图3和4给出了该反应器有4组气体分布器的情况。
图5是直接导入型气体分布器的气体分布管和其上的气体喷射孔结构的示意图。
图6是隔板分布型气体分布器在反应器底部的结构侧面示意图。
图7是隔板分布型气体分布器在反应器底部截面的布置图。
图8是下部换热器结构示意图,其中各换热管合并后连接于总管。
图9是下部换热器结构示意图,其中各换热管分别连接于总管。
图10是上部换热器结构示意图,其中各换热管合并后连接于总管。
图11是上部换热器结构示意图,其中各换热管分别连接于总管。
图12是反应器内部换热区的截面示意图(U形管结构)。
图13是套管结构的换热元件。
图14是反应器内部换热区的截面示意图(套管结构)。
图15是反应器中过滤空间的分布图。
图16是48根过滤管件组成的过滤器组的结构示意图。
图17是12根过滤管件组成的过滤器组的结构示意图。
图18是反应器内过滤器组的俯瞰示意图。
图19是过滤器组在反应器截面上的排布示意图。
图20是导流管的结构示意图。
图21是二次回流冷凝分离器的结构示意图。
图22是过滤-清洗系统的工艺流程示意图。
图23是预冷凝-分离系统的工艺流程示意图。
图24是导管式气体分布器的返流浆液清理流程的结构示意图。
图25是隔板式气体分布器的返流浆液清理流程的结构示意图。
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/ |
/ |
/ |
固定床是床料相对固定,也叫移动床(很扯),结构简单,控制简单。流化床是床料剧烈翻腾以便和燃料充分混合反应,可以适应不同粒径的燃料,且热容较大,燃烧较充分。缺点是反应器相对复杂,床料对反应器磨损较大,后...
固定床是床料相对固定,也叫移动床(很扯),结构简单,控制简单。流化床是床料剧烈翻腾以便和燃料充分混合反应,可以适应不同粒径的燃料,且热容较大,燃烧较充分。缺点是反应器相对复杂,床料对反应器磨损较大,后...
优点:①能实现固体物料的连续输入和输出;②特别适用于强放热反应;③便于进行催化剂的连续再生和循环操作。局限性:①目的产物的收率低;②反应转化率较低;③催化剂加速粉化,流失大;④经验性操作,随意性大。
《用于费-托合成的气-液-固三相悬浮床反应器及其应用》专利涉及F-T合成过程中使用的气-液-固三相悬浮床反应器和其配套系统,尤其涉及反应器构造与尺寸设计、气体分布器和换热器的布局与设计、蜡与催化剂的过滤系统、反应器内部的导流装置以及反应器顶部的雾沫消除装置;以及所述的反应器在规模化费-托合成生产工艺中的应用。
1、《用于费-托合成的气-液-固三相悬浮床反应器及其应用》反应器主要包括下述组件:
(1)垂直方向的直桶体高度为25-45米的反应器本体;
(2)设置在反应器底部的直接导入型或隔板分布型气体分布器;
(3)一段或两段主换热器,以及辅助换热器;
(4)设置于主换热器上方或位于两段主换热器之间,分布在反应器壁面附近环形区域的多组液-固过滤分离装置;
(5)靠近反应器壁面设置的用于改善催化剂沿反应器轴向分布的一组或多组导流管;
(6)设置在反应器内顶部的雾沫分离装置;
(7)与上述设备配套的系统;
其特征在于所述的主换热器设置在反应区下部和选择性地配置在跨越三相反应区与气相区上部,所述的辅助换热器设置于所述液-固过滤分离装置的上部;其中所述的换热器是将换热元件通过一组集总管件组成一组换热组件,由多组换热组件组成换热器;所述换热组件的集总管两端设置支撑元件,支撑元件安装在反应器壁的支撑构件上,形成悬挂结构;
所述反应器的配套系统包括:
(1)设置于反应器外的滤出蜡接受-和过滤稳压系统;
(2)与反应器内设置的液固分离系统配套使用的、设置于反应器外的气体清洗系统和/或液体清洗系统;
(3)用于处理沉积浆液的辅助系统;
和/或(4)设置于该反应器上出口的预冷凝-雾沫分离系统。
2、根据权利要求1所述的气-液-固三相悬浮床反应器,其中所述的反应器采用一段主换热器时,所述的主换热器设置在反应区的下部;当所述的反应器采用两段主换热器时,所述的主换热器设置于反应区的下部和液-固过滤分离装置上部;其中设置于反应器下部的主换热器的底端在气体分布器上方0.1-3米处。
3、根据权利要求2所述的气-液-固三相悬浮床反应器,其中设置于反应器下部的主换热器的底端在气体分布器上方0.3-2.5米处。
4、根据权利要求1所述的气-液-固三相悬浮床反应器,其中所述的换热器采用U型管换热元件或中心套管外加上升管的换热元件。
5、根据权利要求1-4任一所述的气-液-固三相悬浮床反应器,其中所述设置于反应器外的滤出蜡接受-和过滤稳压系统包括液体蜡接受罐及其液位调节系统、气体压力缓冲罐、稳压罐和精密压力控制系统。
6、根据权利要求1-4任一所述的气-液-固三相悬浮床反应器,其中所述气体清洗系统的主要设备包括气体压缩机、气体加热器和带有加热保温功能的气体缓冲罐,用合成气、氮气和来自F-T合成的合成气作为为清洗介质;以及其中所述液体清洗系统的主要设备包括热油泵和带有加热保温功能的清洗液体计量罐,用液体石蜡、合成蜡或沸点大于300℃、小于380℃的F-T馏分油作为清洗介质。
7、根据权利要求1-4任一所述的气-液-固三相悬浮床反应器,其中所述用于处理沉积浆液的辅助系统包括:在气体分布器的分布管集总管的最低部设置连通管引出反应器外后使之与受液容器连通,并由液位控制系统调节和控制;或者将反应器底部封头空间作为受液容器,并配置一套积液液位指示和控制系统,以便在积液达到一定水平时,通过自动控制或手动控制放出积液。
8、根据权利要求1-4任一所述的气-液-固三相悬浮床反应器,其中所述设置于该反应器上出口的预冷凝-雾沫分离系统包括预冷凝器、气-液分离器、小型液体接受容器和配套的阀门。
9、根据权利要求1-4任一所述的气-液-固三相悬浮床反应器,该反应器包括:
(1)垂直方向的直桶体高度为25-45米的反应器本体;
(2)设置在反应器内底部的直接导入型或隔板分布型气体分布器,和与所述气体分布器配套使用的处理沉积浆液的辅助系统;
(3)分布在反应器壁面附近环形区域的多组液-固过滤分离装置;
(4)设置在整个反应区下部的主换热器,和可以选择配置的、跨越三相反应区与气相区的上部主换热器;以及在多组液-固过滤分离装置上部设置的辅助换热器;
(5)靠近反应器壁面设置的一组或多组导流管;
(6)包括设置于反应器内顶部的一级冷凝型雾沫分离装置和位于上部出口处的二级雾沫分离装置的雾沫分离装置,和任选地设置于反应器上部出口处的预冷凝-雾沫分离系统、设置于反应器外的滤出蜡接受-和过滤稳压系统和设置于反应器外的气体清洗系统和/或液体清洗系统。
10、根据权利要求9所述的气-液-固三相悬浮床反应器,其中所述的反应器本体在垂直方向的直桶体高度为28-40米,内径为2-15米。
11、根据权利要求10所述的气-液-固三相悬浮床反应器,其中所述的反应器的内径为4-12米。
12、根据权利要求9所述的气-液-固三相悬浮床反应器,其中所述的液-固过滤分离装置垂直布置在反应器中上部,在只有一个主换热器时,该过滤分离装置位于主换热器上方;在有两个主换热器的情况下,该过滤分离装置位于两段主换热器之间;所述的液-固过滤分离装置有多组,每组过滤分离装置由12~60根过滤管件组成过滤管束,每根过滤管的两端通过过渡连通导管按流体均匀分配原则与集总管连接引出反应器外,下端导出管和外部排蜡-稳压系统连接,用于移出过滤出的蜡液;上端导出管和清洗系统连接,用于过滤管的在线清洗。
13、根据权利要求12所述的气-液-固三相悬浮床反应器,其中所述的液-固过滤分离装置安排在靠近反应器壁的环形区域;其中所述每组过滤分离装置由20~50根过滤管件组成过滤管束。
14、根据权利要求13所述的气-液-固三相悬浮床反应器,其中所述过滤管束的管外表面的最小间距在20-50毫米之间。
15、根据权利要求14所述的气-液-固三相悬浮床反应器,其中所述液-固过滤分离装置的过滤管件是各种可反吹清洗的金属过滤管,过滤部分长度为0.3-3.0米,孔径为1-50微米。
16、根据权利要求15所述的气-液-固三相悬浮床反应器,其中所述液-固过滤分离装置的过滤管件的过滤部分长度为0.5-2.5米,孔径为10-30微米。
17、根据权利要求9所述的气-液-固三相悬浮床反应器,其中所述的雾沫分离装置包括设置于反应器内上部气相区的一级雾沫分离装置,和设置在反应器出口导管处的二级雾沫分离装置;其中所述的二级雾沫分离装置的结构为在反应器出口导管处连接了一个筒状冷凝器,该冷凝器由1-8层紧密排列的换热管围成一个筒状结构,下方设有锥形收集器和设置在锥底的回流导管。
18、根据权利要求9所述的气-液-固三相悬浮床反应器,其中所述的一组或多组导流管设置在反应器三相悬浮床层内靠近反应器壁面的位置,用于两段换热器热耦合并用来加大悬浮液循环量以达到改善催化剂沿反应器轴向分布。
19.、根据权利要求9所述的气-液-固三相悬浮床反应器,其中所述的气体分布器为直接导入型,分布在反应器底部封头的表面,由多组环形结构组成,其向下的侧面与反应器本体的底部封头的内表面上方保持10-200毫米的距离;或者其中所述的气体分布器是隔板式气体分布器,其特征在于:在底部封头上部的反应器截面设置隔板,将反应器底部封头隔出一个自由空间,隔板上侧的平面上布置气体分布管件,分布管件通过向下的过渡管与隔板紧密连接、并穿过隔板与该自由空间连通,反应器的气体入口位于隔板下部与该自由空间连通,进入该自由空间的入口气体导管向下对准封头中心内表面。
20、根据权利要求19所述的气-液-固三相悬浮床反应器,其中所述的气体分布器为直接导入型时,每组气体分布器是在每个环形结构上带有向侧下方开设的气体喷射孔的管件,气体喷射孔径在1.0-8.0毫米范围;同时在每个环形元件之间设置有与封头内表面连接有平行于反应器轴向的环形导流挡板,高度为10-300毫米,以保证最终上升气流垂直向上流动;在一个圆或扇形区域的所有上述元件集总后,通过多根导管与该区域的导入反应的进气管连通,形成一组气体分布器。21.根据权利要求20所述的气-液-固三相悬浮床反应器,其中所述的直接导入型气体分布器包括1-8组所述的气体分布器,在反应器整个底部形成均匀分布的气体分布构件;其中所述的气体分布器用于分布气体的元件向下侧面与反应器本体所属的底部封头的内表面上方保持30-150毫米的距离;所述气体分布器向侧下方开设的气体喷射孔的孔径为1.5-5毫米。
22、将合成气转化为烃类的费托合成方法,其特征在于所述方法是在权利要求1-21任意一项所述的气-液-固三相悬浮床反应器中,在费-托合成催化剂存在下进行的。
23、根据权利要求22所述的费托合成方法,其中所使用的催化剂是适用于反应温度为240-250℃的低温浆态床工艺使用的铁基催化剂;或所使用的催化剂是适用于反应温度为250-290℃的高温浆态床工艺使用的铁基催化剂。
24、根据权利要求23所述的费托合成方法,其中所述反应器中最大表观气速为0.50米/秒。
下面结合附图对《用于费-托合成的气-液-固三相悬浮床反应器及其应用》的三相悬浮床F-T合成反应器及其应用进行详细的说明,但它们不以任何方式限制该发明。
该发明的三相悬浮床F-T合成反应器是根据生产规模和催化剂特性设计的浆态床反应器和其配套系统,图-1是三相悬浮床F-T合成反应器一种组装结构原理图,如图1所示该反应器和其配套系统(图22-25)包括:(1)大型F-T合成反应器本体1,(2)反应器内底部用于分布气体和防止催化剂在反应器底部沉积的气体分布器2,和防止该分布器堵塞的器外配套系统(图24、25);(3)反应器内部设置的用于换热的下部3,和可选的上部4换热器或者必要的用于过滤区移热的辅助换热器,(4)反应器内中上部在两段换热构件之间设置的液固分离系统5,和其引出反应器后的配套稳压排液以及清洗系统(图22),(5)设置于反应器内部的用于克服由于分段内构件结构形成的器内局部循环、加大液体循环量、促进催化剂均匀分布并能耦合两段换热器负荷的导流装置6;(6)反应器内上部气体导出空间中与上部换热构件耦合的回流分离构件7,以及设置于反应器外气体流股出口处的预冷凝-雾沫分离系统(图23)。
如图-1所示的是三相悬浮床F-T合成反应器一种组装结构。在实施F-T合成反应时,按工艺设计组成的合成气(CO H2)8通过反应气体导入管进入设置在反应器底部的气体分布器2,经过该分布器的气体喷射孔形成对底部封头表面的较强冲刷,并反弹形成均匀分布于反应器整个截面的向上的以鼓泡方式的气流16,经过换热器3、4以及分离装置5等内构件的二次分布,在整个反应器气-液-固悬浮床层中形成搅拌湍流的流场,完成传质、F-T合成反应和传热,生成包括重质蜡在内的烃类产物,同时产生大量的反应热。在上部换热器4的中上部,包括未反应的合成气以及反应生成的气相产物的气体流股通过反应器中的气-液界面17处离开气-液-固悬浮床层,进入反应器上部的气相空间。并在通过上部换热器4的顶部集总管形成的挡板结构(12-13)时对雾沫夹带进行初步分离。初步分离雾沫夹带的该气流股继续向反应器出口方向流动,并在设置于反应器顶部出口附近的回流分离构件处通过该构件的侧面冷凝管束组成的环形侧面进入连通于反应器顶部出口的分离构件7,在通过该构件的环形侧面过程中,气流被冷却、形成较高沸点组分的部分冷凝,并在气流与管束的碰撞过程中夹带的液沫和冷凝产生的液体在冷却管束上形成向下流动的液膜,实现出口气流中雾沫的有效分离,分离雾沫和冷凝液体后的气体流股9经过反应器顶部出口导出反应器。在F-T合成反应过程中,除了产生上述随气体流股带出反应器外的产物外,重质产物将在反应器中积累,使液位17上升,为了稳定三相悬浮床的液位,必须将悬浮液体中的F-T产物导出反应器外,同时又不希望悬浮在三相床中的固体催化剂离开反应器;该发明在两段主换热器的设计方案中,在下部和上部换热器之间设置了多组固-液分离过滤器5,液体通过该过滤器组的多孔过滤表面被导出反应器外10,用调节过滤量实现对液位17的控制。过滤器在程序控制下可以停止过滤并进行必要的清洗,清洗流体11可以是清洁的热气体或热液体。该发明采用在两段换热器3、4和反应器顶部回流冷凝分离构件7的换热管束中通入加压循环热水12、14实现移热,在管束中所产生的蒸汽13、15引出反应器外进入蒸汽包。
根据反应器的口径,该发明的气体分布器2(图-1)可以分成一组或多组,图-2、图-3和图-4分别示出了直接导入型气体分布器的结构示意图。所述的分布器在反应器横截面上形成扇形依据反应器底部封头形成的内表面形状分布在反应器底部整个椭球或球面上,每组分布器通过多组气体导管18分别连接于其进气总管19。图-3所示的分布器由多组管件20组成,这些分布管件首先连接于其总管21(图-4),并通过多组气体导管18与进气管19连接,如图-3、图-4所示。为均匀的分配进气,在该气体分布器上分布着面向反应器底部封头内表面的、用于气体分布的开孔(气体喷射孔)22,如图-5所示。所述的气体喷射孔开孔的大小和数量由气体通过开孔的气速确定,为了确保气体分布和形成有效的对反应器底部内表面的气流冲刷以避免催化剂在反应器底部的沉积,气体通过开孔的流速一般大于25米/秒,但为了限制气体分布器引起的阻力降,该发明限制该气体流速小于100米/秒,一般取30-90米/秒,此时气体分布器的阻力降为0.03-0.25兆帕,另外该发明的气体喷射孔径优化为1.5-5.0毫米,过大的开孔容易在反应器操作波动或开停车中造成催化剂进入管件内并沉积形成局部或全部堵塞,过小的孔径会造成加工方面的复杂性。
该发明大型三相悬浮床反应器的气体分布器的另外一种设计方案是采用隔板分布型气体分布器,该气体分布器在反应器底部的连接结构及截面分布的示意图分别如图67所示,其中隔板23将反应器底部封头与上部反应床层分隔开来,利用隔板进行气体的一次分布进入在隔板上部安装的气体分布器20,上述隔板可以是合理设计的平面隔板或者按受压情况设计的一个椭球封头。对平面隔板结构,设计方案见图-6和图-7。
在本设计方案中,进入反应器入口导管19的气体向下进入反应器底部被隔板23分隔出的空间,然后通过与隔板上部的气体分布元件20连通的导管24进入气体分布器元件,通过在分布元件的侧下喷射孔进入反应器的三相反应床层。对于大型反应器,对平面隔板应进行加强处理,梁26和立柱25是用于加强隔板的重要结构部件。大型隔板在消除热应力方面采用有关机械规范设计。
关于该发明反应器的换热系统,各部分的换热器结构如图8-14所示。
如图1所示,该发明在反应器内设置的换热内件可以是一段或两段主换热器3、4,换热器的设置主要是根据反应器中进行F-T合成反应(包括水煤气变换反应)所产生的反应热效应和反应器的操作条件设计的,换热管内采用强制循环的带压沸腾水(生产蒸汽)作为换热介质,反应热以副产水蒸气的方式间接移出反应器的气-液-固悬浮床层。当采用一段主换热器时,反应区应主要限制在换热器分布的区域,并可加设小型换热构件组,起到对液-固过滤装置所占空间的温度调节的作用,或在气-液界面附近上方加设同时起气-液(固)分离作用的换热构件。
在换热元件的结构方面(参见图-8,图-9,图-10,图-11),考虑了换热器设计的基本工艺约束,包括管内流速(水 蒸汽两相)、换热管内的压力(产生饱和蒸气的压力和温度)、反应器床层温度、反应器空间被换热管所占比例的大小等。
该发明的换热器的换热管件可采用U型管或套管结构。
U型管结构(参见图-8,图-9,图-10,图-11)简化了在反应器截面上充分均匀分布换热管时带来的分配和集总管件(29,30)设计的复杂性。U型管合并后(图-8,图-10)/或分别(图-9,图-11)连接到入口分布管(对下降换热管28,可以采用单管)或出口集总管(对上升换热管27)上。集总管29,30通过过渡导管连接到与反应器外部水-蒸汽系统连通的引入(31)和引出(32)导管。在运行过程中,来自循环水泵的热水由引入导管31进入、经过过渡管件分别进入各组热水总管29、由此分布并进入换热管束28向下流动被加热和部分蒸发产生蒸汽,下流到底部后经过U型弯头进入上升管束27向上流动至蒸汽-热水集总管30、然后经过过渡管后至蒸汽-热水导出管32通向反应器的器壁接管导出到反应器外的蒸汽-热水系统。
图-10和图-11所示的上部换热器的集总管29、30被排布在反应器的同一截面上,形成该截面上小的自由空间,这种结构相当于一块塔板形成对上升的气相流股的气-液分离,而换热器构件具有造成对气体流股的冷却作用,使得气流股产生部分冷凝,增加液体的聚集,强化分离效果。另外,如上设置的换热器在反应器截面上形成均匀分布的排列(图-12),有利于反应器中上升气泡的分散,起到强化混合、传质和传热的作用。
套管结构(图-13、14)更利于换热原件在反应器界面上的均匀分布并在流体力学方面有利于实现下降管热水少产生蒸发的工艺要求(下降管产生太多蒸汽会引起系统的震动)。
套管式换热器的主要结构见图-13,其主要特征是:(1)换热元件由处在中心处的套管33和以等边三角形分布(见38)在其周围的3支上升管34组成;(2)套管中内管是下降管,内管与外管间的环隙与上升管34具有同样功能,来自套管式结构的集总管29,30的内管的热水向下流经此下降管,上升的汽液介质经过该3支上升管和33的环隙进入集总套管29,30的内外管间环隙,中心套管环隙内设置用于保证环隙间距均匀的固定在内管表面的弹性支撑结构(见35、37);(3)集总管的内管连接来自反应器外的热水循环泵或蒸汽包的下降管,外管(环隙)连接与反应器外部的蒸汽包上升管;(4)多组上述换热元件连接在一根集总套管上形成一组换热组件,多组换热组件排列形成换热管件在反应器空间上的均匀分布(见图-14)。
关于该发明反应器的液-固过滤系统,其结构如图15-19所示。
如图1和图15所示,该发明在反应器内设置了多组液-固过滤分离构件5。每组过滤构件的集总管通过过渡管件(图-15)39、40穿过反应器壁与反应器外部设备连通。
每组过滤构件由多根过滤元件组成的过滤管束41、42、43和必要的支撑盲管47构成,过滤管分组通过过渡管件44、45集总实现上部和下部的分别连通,最终一组由48根过滤管件组成的过滤器在上部和下部分别汇总到集总管件46后引出反应器(图-15、图-16)。同样,由12根过滤管件组成的过滤器组的结构见图-17。图-18给出典型过滤组件(分别为12根过滤管和48根过滤管)的俯瞰示意图。这种结构使得过滤构件组含有的过滤管数目以3、6、12、24、48、96、152任意变化,同时实现了对每一根过滤管件从集总管角度看,该发明的结构在流体阻力分配方面严格均匀。实践证明,该发明的结构避免了过滤元件之间滤饼的架桥,非常有利于滤饼的彻底清除。对两段主换热器的设计,下部换热管束(例如图-8或图-9所示的结构)完全处在气-液-固三相反应区。上部换热器(图-1,图-10或图-11)部分处在三相区,部分处在气相区。处在气相区的设置充分考虑了反应器上部空间形成部分冷凝的环境,同时上部换热器的集总管件设计为一个在反应器截面上占有较大(70-90%)面积的排列,该排列可以采用连接于集总管件上的挡板构件,起消除离开反应区的气流股中的雾沫夹带的一级分离作用,在反应器上部的换热器分布在气相空间的面积以使气相流股在反应器的出口温度与反应床层温度差值保持在一定值(2-6℃)确定,这一温差可以在实际操作中通过调节反应器的液位高度来实现优化。换热器的换热管束形成在反应器整个换热空间中的均匀分布(图-12)。对两段换热方案,该发明的换热空间考虑了两段之间的耦合,这是通过设置在反应空间上可以强化两段换热空间的液体循环的垂直分布在反应器壁附近的导流管6(见图-1)实现的。在整个反应器中,下部换热器是最为重要的移热装置,在典型的工业化反应器中,搅拌湍流操作条件下,约55-75%的反应热是由下部换热器移出的。为此,该发明对下部换热器的换热面积进行了充分优化,目标是在反应器中布置较大的换热面积的同时,考虑上部和下部换热器的热耦合,设置在换热区的液-固相导流管6(图-1)的作用之一就是实现这种热耦合的重要措施,由于导流管6强化了液-固悬浮相的循环,使得上下部换热器的负荷差别减小,同时增加了反应器操作的弹性。上部换热器所在的空间由于需要布置液-固分离装置而使得可设置的换热面积比下部换热器小,这在结构约束方面自然实现了F-T合成反应器内部反应热在整个反应区分布的特点,而该发明强化换热耦合的设计使得本反应器在温度控制方面有非常大的灵活性,特别是在这种情况下,两段换热器移出反应热产生的蒸汽(对该发明所针对的系列F-T合成催化剂,产生蒸汽到过滤元件是各种适合在三相悬浮床F-T合成环境下并可以反吹清洗的过滤管),根据催化剂颗粒在反应运行过程中的尺度分布,要求其过滤元件的孔径小于90%以上催化剂分布的颗粒尺度,一般选择商用的孔径在10-30微米的烧结/缠绕金属丝网或粉末烧结多孔金属、多孔陶瓷作为过滤元件的过滤介质。上述过滤构件分别与器外导管连接。在反应器外每一组过滤构件的引出导管上分别连接一个手动切断阀和一个自动切断阀,手动切断阀用于特殊维护时使用,自动切断阀受特殊的过滤程序通过DCS系统进行控制,这样的设置实现了对每一组过滤构件实施单独的控制,此后各组的引出导管汇总于总管,下端引出总管与反应器外的受液罐和稳压系统连通,作为滤出蜡的通路。构件上端的总管与清洗系统连通,作为过滤构件反洗的通路,在过滤操作中可以采用衡压过滤或程序增压过滤。过滤构件定期实施清洗。
根据中间试验结果,在三相悬浮床操作条件下,过滤区需要冷却以保证温度与换热区相同,为此,上部换热器的设置使得在过滤环型区围绕的中心空间布置了换热管件。这样的结构同时起到在过滤区的气体流通和分布,保证三相流动对过滤元件的有效冲刷,提高过滤效率。同时根据中间试验的结果,这样的过滤空间在大型反应器中足够分布实际运行过滤器面积的3-5倍的过滤器组,考虑到过滤器较易损毁,设计中考虑了过滤面积适当的富裕量和在反应器结构方面实现方便维护的问题。在设计一段主换热器的情况下,过滤器区域的移热需要单独考虑小型换热器构件组依据过滤器的排布进行合理配置。
对于在一组中的过滤元件安排,根据中间试验的结果,过滤管束的管外表面的最小间距应在20-50毫米之间,过小的间距会造成过滤管之间形成滤饼架桥、难以靠反清洗和冲刷清理干净,使过滤表面部分失效,影响过滤负荷的提高;另外,在过滤元件上部连接较长的过渡管(密实-非过滤区)41(图-16,图-17),以避免由于上部集总管的遮挡引起的局部富气泡区(气含率大于70%)处在过滤表面上,引起液体排出量减少,本设计要求与上部集总管连接的过渡管41的长度大于300毫米,过滤管过滤面长度为1000-3000毫米。一组过滤器依靠上下的集总管和连接管组成的多边形结构与中心的支撑盲管47连接,形成一个刚性整体,增加了过滤器的整体刚性,实现了对过滤元件的有效保护。
上述过滤器在大型反应器中的排布可以根据反应器的尺度和过滤器的生产能力进行设计,图-19给出30组过滤器在大型反应器中的排布。在过滤器组之间的间隙可以设置辅助换热构件,用于对过滤区形成有效的温度控制。
如图1所示,该发明在反应器气-液-固三相区设置了多组液(固)导流管6,且所述的导流管件固定在反应器的壁面上,其作用是:(1)形成强化的液-固相循环,改善催化剂在反应区内的分布(增加上部反应区内催化剂的含量);(2)实现沿反应器轴向传热耦合,增加两段换热器移热操作的弹性。
该导流管件的设计原则是:(1)合理的导流管内径确保反应器的液-固相的大量循环;(2)导流管的循环可以有效地形成催化剂在反应器轴向分布的改善;(3)导流管的轴向位置考虑两段换热器之间的有效循环;(4)导流管从下部换热器向反应器底部的绝热空间供应大量的液体以实现下部换热器对反应器入口处的移热作用。
该导流管结构见图-20。导流管的上端入口是一个扩大的受液口48,下降管是一根在反应器内部垂直的直管,下端出口是面向反应器轴心的侧孔49。导流管的口径是按照设计循环量确定的,受液口48的口径一般要求大于导流管口径1.5~5倍。一段导流管的长度应大于5000毫米,以保证较大的液-固下落量。[0138]为了解决反应器出口的雾沫夹带导致冷凝产物固含量偏高的问题,在该发明的反应器上部气相区设置了一个固定于反应器出口管下部的器内冷凝分离器7(见图1),以实现二次除沫分离。
在反应器上部气相区,当反应器换热系统为两段时,分离系统设置是将上部换热器和雾沫分离结构结合起来,在上部换热器的气相换热区形成部分冷凝并在换热器的最上端形成一块塔板,造成回流分离效应,此后气流经过一个固定于反应器的出口管50(参见图-21)下部的器内冷凝分离器7,实现二次除沫分离,其具体结构见图-21:处于反应器气相空间的气体必须通过一个由多层排布换热管52围成的桶状侧面的缝隙(见图-21),气流通过被冷却-冷凝并与换热管束52发生碰撞,达到增大液滴粒度并在换热管表面上形成下降的液膜,进而捕获雾沫、特别是催化剂细粒子的目的。捕获的液体和催化剂粒子沿换热管束下降到受液器54,经过导流管55流到二次换热器的上部(或三相空间中),在导流管下部设置一个挡流机构(可以是滑阀58),以避免上升气流短路引起分离效果的降低。可选地,可以在该冷凝器换热管束的内外设置桶状挡板59、60以强化冷凝和雾沫捕集效果。顶部冷凝分离器的冷却介质是与反应器主换热器的热水-蒸汽系统结合起来的,但热水循环泵单独配置,来自热水泵的热水经过与反应器外部连通的导管53进入到下部集箱57,热水经过换热管束52部分蒸发,形成的汽-液混合介质汇总到上部集箱56,然后由导管51导出反应器到外部的蒸汽包。该发明的塔顶冷凝分离技术与已有技术相比,采用简单结构,实现了回流分离,实践证明可以确保气体流股的一次冷凝液中固体催化剂含量降低到小于2ppm,使得F-T合成高温冷凝分离液相产物对后续加氢催化剂的污染接近彻底消除。
为将该发明的反应器有效应用于F-T合成流程,该发明的反应器还配备了如下的器外配套的关键流程系统:(1)为反应器内过滤分离器的有效运行设置的器外滤出蜡接受-和过滤稳压系统;(2)与反应器内设置的液固分离系统配套使用的、设置于反应器外的清洗系统;(3)将反应器内上部气体导出的、与上部换热构件耦合的回流分离构件,例如设置于反应器出口的换热预冷凝-分离系统等;和(4)为反应器底部的气体分布器设置的处理沉积浆液的辅助系统。
图-22示出了上述滤出蜡接受-和过滤稳压系统和过滤-清洗系统的工艺流程示意图。具体地说,在F-T合成过程中,反应器内的三相床层的液位维持在一定范围作为前提条件,设置在反应器内的多组过滤装置5按适当的程序进行液体蜡和催化剂的分离。在过滤过程中,切断阀61处于开启状态,切断阀82处于关闭状态,三相床层的固体催化剂被阻挡在反应器内,在施加在过滤原件外表面与内表面的压差作用下,F-T液体蜡和部分夹带的气体通过过滤装置进入到过滤元件的管内,该液体F-T蜡和夹带气体经过导出管和设置的切断阀(自动和手动各一个)61进入到液体蜡接受罐62,并在62中完成气-液分离,液体停留在该接受罐的下部,气体经过导管64进入气体压力缓冲罐63。液蜡接受罐62中液体F-T石蜡(初级过滤蜡)在该罐中保持一定的液位,并经过液位调节系统68减压通过管线67送到下游进一步处理。在气体压力缓冲罐63中,来自62的夹带-解吸气体进一步分离少量夹带液体后,经过精密压力控制系统69减压后进入管线65排出本单元,该气体压力缓冲罐内的积液由自动控制系统83适时排出、并并入管线67。稳压罐63压力的稳定控制是靠从外界以恒定流量66引入的合成气和压力控制系统69联合实现的。当过滤装置实施一段时间的过滤操作后,过滤器外表面积累的固体滤饼需要被清除,此时,关闭61,停止过滤,按过滤系统控制程序安排清洗。过滤装置的清洗系统主要由气体清洗和液体清洗两种方式。气体清洗系统由气体压缩机71、气体加热器72和带有加热保温功能的气体缓冲罐73等主要设备组成。来自F-T合成的干净合成气70经过71加压和72加热(与反应器温度相同)后,进入带有加热保温功能的气体缓冲罐73,该缓冲罐在压力控制系统75的控制下处在设定的清洗压力。液体清洗系统主要由热油泵78和带有加热保温功能的清洗液体计量罐84等主要设备组成。计量罐84总处在储液备用状态。补充的热油77优先采用在下游加氢以后沸点大于300℃小于380℃的F-T馏分油。计量罐与气体清洗系统的气体缓冲罐通过带有自动切断阀85的管线连接,以便在清洗时保证计量罐有足够的压力将液体压入反应器内的过滤装置。
对停止过滤的过滤器组在实施清洗时,自动阀门61关闭,自动阀门82开启;采用气体反吹清洗时,80、85关闭,开启81实施反吹清洗。采用液体清洗时,关闭81,开启80和85实施液体清洗。图-23示出了为该发明的反应器设计的器外预冷凝-分离系统。在该发明反应器顶部导出的F-T合成混合气体流股86进入主要的热交换流程之前,可选择地进入设置于反应器外的换热预冷凝-分离系统。该系统主要用于分离出口气体流股中的液-固夹带物,使下游冷凝产品不受催化剂夹带的污染。其特征在于:对三相反应器的出口气流股86利用一个小型换热器(或小型余热锅炉)87降温(5-10℃),冷凝出少部分重油,再经过一个气-液分离器89,将从反应器中夹带和冷凝下的液体分离出该气体流股,保证进入下游的气体流股90夹带液-固物不会对合成重油产品造成催化剂污染,保证从气流股冷凝下的主要合成油品的质量,为进一步加工提供基础。在正常操作过程中,89与一个小型受液罐92连通,分离出的污染重油通过开启的自动切断阀91进入该受液罐保存,自动阀93关闭。当受液罐92液位处于高限时,控制系统关闭自动切断阀91,开启切断阀94对92充压,同时开启93将受液罐中的污染重质油压入反应器,可选地,这部分重质油也可以通过管线送到下游污染重质油处理系统实施净化。小型换热器87的冷流股95、96可以是主换热流程对应的进入反应器预热前的合成气流股。设置本系统的情况下,可以取消反应器顶部的冷凝回流装置7。
为克服可能发生浆液返流并在分布器中积累的问题,该发明采取了相应的工艺措施,以清理该积累浆液,保证分布器在任何情况下不被堵塞。图-24和图-25所示的设备及流程说明了所采取的技术措施。图24和25分别是气体分布器为直接导入型和隔板分布型的情况。对于直接导入型的气体分布器,返流浆液的清理流程如图24所示:该发明在分布管集总管21的最低部设置连通管98引出反应器外后与一个受液容器97通过一个球形切断阀99连通,在正常运转时,99常开,这样,任何返到分布器中的浆液将及时导入受液容器97,保证分布器不被堵塞。在必要时,99可以使该受液容器与反应器隔离,以便清理浆液。该返流浆液可以从97通过管线101导入到催化剂还原处理单元。97中的积液情况可以由液位控制系统100调节和控制。对隔板式分布器,返流浆液的清理流程如图25所示。在此情况下是一种简化处理方式,即是将底部封头空间作为受液容器,所配置的是一套积液液位指示和控制系统;当积液达到一定水平时,通过自动控制或手动控制放出积液。
实施例1
以下为按照该发明的技术方案用小型反应器进行中间试验的结果。
所述的小型反应器具有以上所述反应器内和器外的各种功能构件,其中所述的换热装置为两个主换热器;所述的气体分布器为直接导入型;所述反应器底部的气体分布器设置的处理沉积浆液的辅助系统为上述反应器内的设计方案。
中间试验的小型反应器设计内径为349毫米,高度为34米;所使用的催化剂为实施例1所公开的低温浆态床F-T合成催化剂。最大处理合成气量为500标准立方米/小时(氢气 一氧化碳含量为98.8%),合成回路转化率为94-96%,可液化产物89千克/小时。在线过滤蜡产物催化剂含量0.5-4ppm。重质冷凝产物催化剂含量<2ppm,轻质产物催化剂含量<0.5ppm。
实施例2
以下为按照该发明的技术方案用中型反应器进行试验的结果。
所述的反应器具有以上所述反应器内和器外的各种功能构件,其中所述的换热装置为两个主换热器;所述的气体分布器为直接导入型;所述反应器底部的气体分布器设置的处理沉积浆液的辅助系统为上述反应器外的设计方案。
所述工业示范型的中型F-T合成反应器内径为5.3米,高度为45米。反应器内设置了该发明的上述各种功能构件。所使用的催化剂为实施例1所公开的低温浆态床F-T合成催化剂。最大处理合成气量为140000标准立方米/小时(氢气 一氧化碳含量为98.6%)。合成回路转化率94-96%,最大可液化产物产能为25吨/h,设计处理合成气量为125000标准立方米/小时(氢气 一氧化碳含量为98.6%),设计合成回路转化率94%,设计可液化产物22吨/小时。该反应器各部件采取保守设计原则,预计各项指标将达到或超过设计要求。
以上已详细描述了《用于费-托合成的气-液-固三相悬浮床反应器及其应用》的实施方案,对本领域技术人员来说很显然可以做很多改进和变化而不会背离该发明的基本精神。所有这些变化和改进都在该发明的保护范围之内。
2020年7月14日,《用于费-托合成的气-液-固三相悬浮床反应器及其应用》获得第二十一届中国专利奖金奖。 2100433B
悬浮床光催化-膜分离反应器处理受污染河水的研究——针对催化剂固定化导致传质困难而影响反应速率的缺点,本研究开发了基于悬浮粉末催化剂和低压汞灯光源的悬浮床光催化反应器,并用微滤膜单元完成催化剂截留分离。通过处理受污染河水的试验,衡量了该反应器用...
维普资讯 http://www.cqvip.com 维普资讯 http://www.cqvip.com
2018年7月13日,《煤基费托合成—汽油组分油》发布。
2019年2月1日,《煤基费托合成—汽油组分油》实施。
2018年7月13日,《煤基费托合成—石脑油》发布。
2019年2月1日,《煤基费托合成—石脑油》实施。
图1为《悬浮床油品加氢装置及其应用》所述悬浮床油品加氢装置应用的流程图;图2为该发明所述悬浮床反应器的主视图。
|
|