书 名 | 有限元方法固体力学和结构力学 | 页 数 | 631页 |
---|---|---|---|
出版社 | 世界图书出版公司 | 装 帧 | 平装 |
作者:(英国)监凯维奇 (Zienkiewicz.O.C)
Preface
1. General problems in solid mechanics and non-linearity
1.1 Introduction
1.2 Small deformation solid mechanics problems
1.3 Variational forms for non-linear elasticity
1.4 Weak forms of governing equations
1.5 Concluding remarks
References
2. Galerkin method of approximation - irreducible and mixed forms
2.1 Introduction
2.2 Finite element approximation - Galerkin method
2.3 Numerical integration - quadrature
2.4 Non-linear transient and steady-state problems
2.5 Boundary conditions: non-linear problems
2.6 Mixed or irreducible forms
2.7 Non-linear quasi-harmonic field problems
2.8 Typical examples of transient non-linear calculations
2.9 Concluding remarks
References
3. Solution of non-linear algebraic equations
3.1 Introduction
3.2 Iterative techniques
3.3 General remarks - incremental and rate methods
References
4. Inelastic and non-linear materials
4.1 Introduction
4.2 Viscoelasticity - history dependence of deformation
4.3 Classical time-independent plasticity theory
4.4 Computation of stress increments
4.5 Isotropic plasticity models
4.6 Generalized plasticity
4.7 Some examples of plastic computation
4.8 Basic formulation of creep problems
4.9 Viscoplasticity - a generalization
4.10 Some special problems of brittle materials
4.11 Non-uniqueness and localization in elasto-plastic deformations
4.12 Non-linear quasi-harmonic field problems
4.13 Concluding remarks
References
5. Geometrically non-linear problems - finite deformation
5.1 Introduction
5.2 Governing equations
5.3 Variational description for finite deformation
5.4 Two-dimensional forms
5.5 A three-field, mixed finite deformation formulation
5.6 A mixed-enhanced finite deformation formulation
5.7 Forces dependent on deformation - pressure loads
5.8 Concluding remarks
References
6. Material constitution for finite deformation
6.1 Introduction
6.2 Isotropic elasticity
6.3 Isotropic viscoelasticity
6.4 Plasticity models
6.5 Incremental formulations
6.6 Rate constitutive models
6.7 Numerical examples
6.8 Concluding remarks
References
7. Treatment of constraints - contact and tied interfaces
7.1 Introduction
7.2 Node-node contact: Hertzian contact
7.3 Tied interfaces
7.4 Node-surface contact
7.5 Surface-surface contact
7.6 Numerical examples
7.7 Concluding remarks
References
8. Pseudo-rigid and rigid-flexible bodies
8.1 Introduction
8.2 Pseudo-rigid motions
8.3 Rigid motions
8.4 Connecting a rigid body to a flexible body
8.5 Multibody coupling by joints
8.6 Numerical examples References
References
9. Discrete element methods
9.1 Introduction
9.2 Early DEM formulations
9.3 Contact detection
9.4 Contact constraints and boundary conditions
9.5 Block deformability
9.6 Time integration for discrete element methods
9.7 Associated discontinuous modelling methodologies
9.8 Unifying aspects of discrete element methods
9.9 Concluding remarks
References
10. Structural mechanics problems in one dimension - rods
10.1 Introduction
10.2 Governing equations
10.3 Weak (Gaierkin) forms for rods
10.4 Finite element solution: Euler-Bernoulli rods
10.5 Finite element solution: Timoshenko rods
10.6 Forms without rotation parameters
10.7 Moment resisting frames
10.8 Concluding remarks
References
11. Plate bending approximation: thin (Kirchhoff) plates and C1 continuity requirements
11.1 Introduction
11.2 The plate problem: thick and thin formulations
11.3 Rectangular element with corner nodes (12 degrees of freedom)
11.4 Quadrilateral and parallelogram elements
11.5 Triangular element with corner nodes (9 degrees of freedom)
11.6 Triangular element of the simplest form (6 degrees of freedom)
11.7 The patch test - an analytical requirement
11.8 Numerical examples
11.9 General remarks
11.10 Singular shape functions for the simple triangular element
11.11 An I8 degree-of-freedom triangular element with conforming shape functions
11.12 Compatible quadrilateral elements
11.13 Quasi-conforming elemems
11.14 Hermitian rectangle shape function
11.15 The 21 and 18 degree-of-freedom triangle
11.16 Mixed formulations - general remarks
11.17 Hybrid plate elements
11.18 Discrete Kirchhoff constraints
11.19 Rotation-free elements
11.20 Inelastic material behaviour
11.21 Concluding remarks - which elements"para" label-module="para">
References
12. 'Thick' Reissner-Mindlin plates - irreducible and mixed formulations
12.1 Introduction
12.2 The irreducible formulation - reduced integration
12.3 Mixed formulation for thick plates
12.4 The patch test for plate bending elements
12.5 Elements with discrete collocation constraints
12.6 Elements with rotational bubble or enhanced modes
12.7 Linked interpolation - an improvement of accuracy
12.8 Discrete 'exact' thin plate limit
12.9 Performance of various 'thick' plate elements - limitations of thin plate theory
12.10 Inelastic material behaviour
12.11 Concluding remarks-adaptive refinement
References
13. Shells as an assembly of flat elements
13.1 Introduction
13.2 Stiffness of a plane element in local coordinates
13.3 Transformation to global coordinates and assembly of elements
13.4 Local direction cosines
13.5 'Drilling' rotational stiffness - 6 degree-of-freedom assembly
13.6 Elements with mid-side slope connections only
13.7 Choice of element
13.8 Practical examples
References
14. Curved rods and axisymmetric shells
14.1 Introduction
14.2 Straight element
14.3 Curved elements
14.4 Independent slope——displacement interpolation with penalty functions (thick or thin shell formulations)
References
15. Shells as a special case of three-dimensional analysis - Reissner-Mindlin assumptions
15.1 Introduction
15.2 Shell element with displacement and rotation parameters
15.3 Special case of axisymmetric, curved, thick shells
15.4 Special case of thick plates
……
16. Semi-analytical finite element processes - use of orthogonal functions
17. Non-linear structural problems - large displacement and instability
18. Multiscale modelling
19. Computer procedures for finite element analysis
Appendix A Isoparametric finite element approximations
Appendix B Invariants of second-order tensors
Author index
Subject index2100433B
出版社: 世界图书出版公司; 第6版 (2009年1月1日)
平装: 631页
正文语种: 英语
开本: 24
ISBN: 9787506292559
条形码: 9787506292559
尺寸: 22.4 x 14.8 x 3 cm
重量: 821 g
工程力学与 结构力学 有什么区别 结构力学是 属于 工程力学的吗??
工程力学(engineering mechanics)工程科学中,力学是研究有关物质宏观运动规律及其应用的科学,在理论工作上,有时要用微观的方法得出宏观的物理性质。工程给力学提出问题,力学的研究成果改...
面筋和底筋贴在一起,原来设计的钢筋不在位置,没有起作用,结构会开裂。
(参考同济大学的朱慈勉编的结构力学):杆端弯矩,转角,弦转角均以顺时针为证(即线位移以使杆件顺时针旋转为正)。由牛顿第三定律,杆件对结点弯矩以逆时针为证。i指的是杆件线刚度,均取正号。至于外力作用的固...
《有限元方法固体力学和结构力学(第6版)》is dedicated to our wives Helen and Mary Lou and our families for their support and patience during the preparation of this book,and also to all of our students and colleagues who over the years have contributed to our knowledge of the finite element method。 In particular we would like to mention Professor Eugenio Onate and his group at CIMNE for their help, encouragement and support during the preparation process。
在节理岩体中,隧洞的力学性质主要取决于节理的性质,其最常用的数值分析方法是有限元分析方法。本文结合盖下坝引水隧洞,考虑节理倾角、节理间距和水平测压力系数,建立有限元分析模型。计算结果表明,隧洞围岩塑性扩展区和变形沿节理方向大致呈对称分布,且隧洞围岩塑性的区范围与古德曼(Goodman)图解法的判别基本一致。节理倾角和间距对隧洞围岩力学特性有明显影响,但构造应力才是影响隧洞围岩稳定性的主导性因素。
针对预制块路面结构特点建立力学分析模型,运用数值分析软件对其路表弯沉进行计算,分析预制块厚度、基层模量、基层厚度及土基模量对块体路面结构受力的影响。计算结果表明,随着块体厚度增加,路表计算弯沉逐渐减小;在块体厚度相同的情况下,基层厚度越大,路表计算弯沉越小;基层底面的弯拉应力随土基模量增大而减小。
结构力学是一门古老的学科,又是一门迅速发展的学科。新型工程材料和新型工程结构的大量出现,向结构力学提供了新的研究内容并提出新的要求。计算机的发展,又为结构力学提供了有力的计算工具。另一方面,结构力学对数学及其他学科的发展也起了推动作用。有限元法这一数学方法的出现和发展就和结构力学的研究有密切关系。在固体力学领域中,材料力学给结构力学提供了必要的基本知识,弹性力学和塑性力学是结构力学的理论基础。另外,结构力学与流体力学相结合形成边缘学科——结构流体弹性力学。
评定结构的优劣,从力学角度看,主要是结构的强度和刚度。工程结构设计既要保证结构有足够的强度,又要保证它有足够的刚度。强度不够,结构容易破坏;刚度不够,结构容易皱损,或出现较大的振动,或产生较大的变形。皱损能够导致结构的变形破坏,振动能够缩短结构的使用寿命,皱损、振动、变形都会影响结构的使用性能,例如,降低机床的加工精度或减低控制系统的效率等。
观察自然界中的天然结构,如植物的根、茎和叶,动物的骨骼,蛋类的外壳,可以发现它们的强度和刚度不仅与材料有关,而且和它们的造型有密切的关系。很多工程结构是受到天然结构的启发而创制出来的。人们在结构力学研究的基础上,不断创造出新的结构造型。加劲结构(见加劲板壳)、夹层结构(见夹层板壳)等都是强度和刚度比较高的结构。结构设计不仅要考虑结构的强度和刚度,还要做到用料省、重量轻。减轻重量对某些工程尤为重要,如减轻飞机的重量就可以使飞机航程远、上升快、速度大、能耗低。
结构力学——静定结构力学课程是一门理论与实践相结合的课程,通过对几何构造分析、静定结构的受力分析、虚功原理与结构位移计算等内容的学习,使学习者具备对静定结构进行内力和位移计算的能力,以及自学和阅读结构力学教学参考书的能力。
结构力学——静定结构力学课程适合土木工程、水利类工程等专业学习。
2019年1月8日,结构力学——静定结构力学课程被中华人民共和国教育部认定为“国家精品在线开放课程”。