中文名 | 油气检测技术 | 外文名 | hydrocarbon detection technology |
---|---|---|---|
应用领域 | 能源利用 | 涉及学科 | 化工、地理、物理、自动化 |
利用地震数据更好地检测地下天然气层的分布。现有的地震气层检测技术可概括为3类:其一是以弹性介质模型为基础的叠前检测技术;其二为以黏弹性介质模型为基础的能量吸收分析技术;其三为地震属性分析技术。
(1)叠前地震检测技术
以地震波的弹性介质理论为出发点,以揭示地震反射能量(振幅)随炮检距(或入射角)的变化规律为基础,通过确定地层的各种物理参数,达到预测地层岩性与含油气性的目的。其研究技术主要包括AVO反演和弹性波阻抗(EI)反演,采用AVI方法建立正演模型进行烃类检测的方法。当砂岩含气时,纵波波速度明显降低,泊松比也明显低于含水时的泊松比,不同波阻抗的砂岩AVO特征也不同,选择合适的井在合成地震记录层位标定的基础上,研究含气砂岩的地震反射振幅随炮检距的变化关系和各种AVO属性参数的特征,以及含气砂岩与非含气砂岩在各项特征上的差异和变化。含气砂岩AVO属性特征的确定可以指导利用地震道集的AVO反演结果进行可靠的含气砂岩分布预测。
(2)以黏弹性介质模型为基础的能量吸收分析技术
地层的黏弹性特征和非均质性特征是导致地震波能量衰减的主要内在因素。地层中流体饱和度的增加,特别是含气饱和度的增加不仅使地层的黏滞性得到增强,而且会吸收地震波的传播能量,从而使反射波振幅选频降低,并产生明显的频散效应。岩石成分及结构的变化(粒度的非均质性分布、颗粒间胶结方式与胶结程度的差异、孔隙类型与结构的变化、不同形态与开启特征的裂缝分布等)不仅会使地震波的能量因地层的内摩擦和流体与岩石骨架间的相互作用造成不同程度地耗散,而且使地震波的能量因散射、反射、几何扩散等而衰减。能量吸收是地震波能量衰减的重要因素。在地震波的传播过程中,其所经过的每一地层单元对地震波的能量都有不同程度的吸收,振幅幅度随着传播距离和吸收系数的增大呈指数降低。当地层含有天然气时,其吸收系数将有明显增加,现代地球物理技术旨在通过对此“额外”吸收的分析,达到预测天然气层的目的。
(3)地震属性气层预测方法
地震属性技术对揭示地质体的客观现象与展布特征具有十分重要意义,地震属性技术的广泛应用是地球物理技术的重大进展。地震属性技术的优势在于其信息十分丰富,人们可通过不同地震属性从不同侧向了解地质体的客观地质规律。由于气层的黏滞性和低速传播特征,因此含气层往往表现出地震反射强度的变化和地震反射能量的选频衰减,因此,与振幅、能量及频率有关的地震属性通常可以对气层有不同程度的响应,以此为依据选择平均能量、平均瞬时频率、平均反射强度和均方根振幅等相关属性对研究区目的层的含气性特征进行针对性研究。通过对已有气层标定分析,发现平均能量属性对研究区内气层反映较为敏感。由此对该属性进行重点研究,并将其与能量吸收分析预测结果相互印证,以确定研究区的气层平面展布规律 。
(1)自然电位法
自然电位法又称氧化还原电位法,或叠加自然电位法,主要是利用油气藏上方产生的“燃料电池”效应,通过地面上观测油气藏的自然电位异常特征,来分析判断油气藏的分布范围。自然电位采集方法较为简单,可单点或拟二维多道连续观测。为压制异常干扰,常采用多道连续异步观测方法,故称叠加自然电位法。三维多道连续矩阵观测方法和反演方法正在研究之中。
(2)复电阻率(CR)法
复电阻率(CR)法是一种测深类电法,可以从浅到深地研究电性结构特征。该方法采用多道偶极—偶极装置进行几何测深(见图4),野外测量2-8~2 8Hz宽频带的振幅—相位谱,通过反演求出不同深度的视极化率ηs和视电阻率ρs等,用这些参数来评价构造或地层岩性圈闭的含油气性。其中ηs参数反映圈闭的含油气性,ηs高则表明含油气希望大;ηs 没有异常,则表明含油气希望小 。
(1)高分辨率时频电磁法
高分辨率时频电磁法源于俄罗斯 ,是对复电阻率法的有效改进,其方法原理和研究目标涵盖了复电阻率法和建场测深法。复电阻率法采用偶极—偶极几何测深装置,这就决定了其探测深度受装置大小限制,只有加长排列才能达到一定的探测深度。但排列太长,场源功率不够,资料信噪比必然降低,特别是排列太长,电磁效应和激电效应重叠难以分离,勘探效果和分辨率都受到限制。而时频电磁法采用轴向偶极装置,同时研究频率域和时间域参数;探测深度主要与激发周期有关,激发周期长探测深度大,而且分辨率更高。另外,时频电磁法保留了垂直磁场分量的测量,因而又具有建场测深的功能。
(2)高精度磁法
由于油气微渗漏导致的近地表次生磁性矿物的局部富集,因此在油气藏上方可形成微磁异常。实践表明,这种微磁异常一般幅值不大(几至几十纳特),比一般无磁性的沉积地层磁异常大,但远小于火山岩磁异常,在油气田的边部呈相对高值,而在油气藏正上方也存在比周边稍低的异常值,因此,油气藏的磁异常具有环状异常特征。高精度磁法得到的磁异常与其他位场异常一样,由区域异常和局部异常叠加而成。要检测出油气藏产生的磁异常,首先,测量数据必须有足够高的精度;其次,处理上必须从区域和局部磁异常中分离出幅度不大、频率较高的磁异常。因此,应用磁法进行油气检测对数据采集和处理方法有严格要求。
一般来说,用重力检测油气藏是基于油气充注产生的重力亏损,构造油气藏常表现为重力高中有低。但大多数背斜顶部和两翼由于地层隆升而裂缝发育,造成其地层密度降低,也表现为重力高中有低,因此存在多解性。20世纪90年代,从美国和俄罗斯相继引进了重力油气检测技术 。由于用于油气检测的重力测量对数据的精度要求很高,因此在野外施工上有更严格的规定,工作效率相对较低,再加上解释上存在的多解性,重力油气检测受到一定的限制。主要在地形比较平坦的条件下对规模较大、埋深较浅的油气藏进行勘探试验。
是以遥感宏观、同步的数据获取, 通过计算机图像处理方法,提取出由于海底油气藏烃类渗漏引起的海洋表面异常或由于油气藏存在而产生的海底重力异常。在GIS 的支持下, 经与油气地质、地球物理及地球化学数据复合分析, 圈划出异常靶区的一种综合勘探技术 。
油气藏形成一定时间后,在其上方的土壤中会存在明显的烃类异常。国内外大量实践表明,地球化学勘探可用于区域含油气性普查,寻找最有利构造带;也可用于油田滚动开发,为钻井部署提供参考。但地表烃类异常只是指示该地区地下存在油气,是否成藏,实际上地球化学方法不能完全肯定;其次,地面烃类异常与油气藏的平面位置常常不对应,特别是由于构造、断层等地质因素的影响使油气藏的化探异常变得更为复杂;再就是气候、地表、环境等对地球化学异常影响也很大。所以,利用烃类检测技术要十分注意应用条件。一般来说,浅层油气藏的化探效果较佳;国内西部地区应用效果优于东部地区。因此,应用地球化学勘探进行油气检测时,应与地震等地球物理勘探方法相结合,进行综合分析和合理解释,提高油气检测的准确性。
(1)微生物勘探技术
其原理与烃类检测油气的方法基本相同,是通过测定土壤中专门消耗烃类物质的烃氧化菌的浓度与活性特征来评价研究区的含油气性。因此,其样品采集方法与烃类检测技术基本相近,但室内分析测定方法完全不同。烃氧化菌的生存环境受气候、地貌、岩性影响较小,因此具有较好的适应性。但由于土样中烃氧化菌的数量有限,通常需要经过培养,然后才能确定烃氧化菌的浓度与活性,专业技术性强,生产效率较低,成本较高。
(2)放射性勘探技术
在生油盆地的沉积过程中,铀的富集条件与有机质相同,生油岩中的放射性物质伴随油气运聚成藏而富集,并随着油气微渗漏而迁移到近地表。通过检测多种放射性元素的赋存状况,根据放射性元素分布的异常特征推断油气藏分布范围的方法统称为放射性油气勘探技术。
放射性油气检测技术受地表环境和地下地质构造等多种因素的影响,如:在有放射性污染的地区,会严重影响放射性测量结果;在江、湖以及常年积水的沼泽、稻田、湿地等,由于水对放射性射线的屏蔽,会严重影响找油效果。另外,地质因素,如油气藏埋深、盖层岩性、断层等都会影响异常的强度或形态。因此放射性油气勘探技术的应用必须做好适用性评价工作。
(1)1989年,提出叠前振幅检测 (地震法);
(2)1990年,将层间速度差分析(DIVA)应用到地震法中;
(3)1993年,将地温技术的应用到地震法中;
(4)1995年,重力勘探技术得到应用 ;
(5)1998年,遥感技术在南盘江地区油气烃类检测中的应用 ;
(6)1999年,提出了神经网络油气检测技术 ;
(7)2002年,烃类检测技术在吐哈盆地油气勘探中的应用 ;
(8)2003年--非地震直接油气检测技术得到广泛地发展 。
首先要确定一点,是不是材料学院或者化工学院。如果是,那么我可以回答你。检测技术就是利用各种手段对被检测的东西做出质量上的判断。通俗讲,就是检查东西好不好。实际应用中,一般来说,对金属材料的检测,主要通...
入侵检测(Intrusion Detection)是对入侵行为的检测。它通过收集和分析计算机网络或计算机系统中若干关键点的信息,检查网络或系统中是否存在违反安全策略的行为和被攻击的迹象。入侵检测作为一...
焊缝质量检测很多种。主要分为理化分析,无损检测两大类。理化分析是把焊缝切开,或者切出一块带焊缝的板材,做弯折,拉伸试验、显微镜观察,化学溶剂检查等物理、化学方法检测。一般用于焊接强度试验和一些理论研究...
油气检测技术随着油气勘探开发难度的增加(如复杂山地、前陆冲断带和岩性地层油气藏的勘探与开发等),单一的纵波地震勘探难以满足油气勘探开发的需要。而与油气响应直接相关的非地震油气检测方法的研究和应用,也是降低复杂地区油气勘探风险和综合成本的有效途径。
根据观测参数的性质,油气检测方法技术可分为地球物理的和地球化学的两大类,其中地球物理油气检测方法主要包括地震、电法、电磁法、重力、磁力、遥感和地温等;地球化学油气检测方法包括烃类检测和非烃类检测 。
我国开展了二十多年的勘探试验,取得了不少成功的实例,但也不乏因应用条件不适、仪器精度不够、反演方法不精、施工质量不高等因素造成失败的例子。从油气检测的方法原理和应用前提出发,提出以下需继续研究和发展的方向:
(1)高分辨率电磁油气检测方法技术。
油气藏具有多种物理化学属性特征,但在绝大多数地质情况下,含油气储层的电性特征是最为明显的。与不含油气储层相比,含油气储层的电性参数可高出几倍以上。而相同情况下,含油气与不含油气储层的地震属性差异仅为10%左右。国内外石油公司正在竞相开发多频多道电磁油气检测技术和海中移动激发源电磁测深技术[2~4]。
(2)微弱信号采集和提取的配套技术。
随着勘探深度的增加,油气储层引起的可检测的属性特征减少、异常强度减小。深度为3000m、厚为50m 的储层只能引起约0.2mGal 以下的重力异常,引起的高频瞬变电磁响应只能有0.1mV,这些异常接近野外观测精度的极限。通过完善数据采集和处理技术,非地震勘探技术有可能直、有效地获得一定深度的含油气储层引起的微弱的异常信息。
(3)高精度数据预处理技术。
地面和地下各种复杂的地质因素是影响非地震直接油气检测结果有效性的重要原因。主要有三个方面的影响:地形起伏造成的野外部署的不规范和地形改正的误差;地表岩石的不均匀性造成的参数选择的困难和静校正的误差;工业和人文干扰带来不规则的异常变化,使采集数据难以处理解释。
(4)多属性参数综合评价预测技术。
由于含油气储层的多属性特征,在地面和地下复杂的勘探条件下,开展以电磁勘探主导的多属性参数的联合观测和综合解释是逼近真实的地质情况、减少不确定性、提高直接油气检测可靠性的最佳途径[12,13]。急需解决的问题有油气特征属性参数优选和多参数指标的含油气性评价。2100433B
油田埋地管道应用越来越广泛,随着运行时间的延长,运行环境恶劣,设备自身的老化等原因导致的管道失效将造成资源浪费、环境污染以及对社会安全的威胁。应用先进的外检测技术,对油田埋地管道进行检测以及评价,可以极大限度的保证油田生产的安全运行。本文介绍了埋地管道外检测技术在油田油气集输管线检测中的应用情况,并根据检测结果和数据归纳了检测过程中出现的埋地管道存在的主要问题,并对影响埋地管道安全运行的原因进行了总结分析,提出了相应的建议和措施,为指导油田埋地管道的设计、施工、日常生产管理与维护提供技术支持。
管道运输以其成本低、收益高在油气输送中得到了广泛的应用。由于受到环境中腐蚀介质的作用,石油、天然气管道的腐蚀难以避免。管道腐蚀的机理分为化学腐蚀和电化学腐蚀两种,针对这两个机理,人们发展出了很多腐蚀的检测技术和防腐措施。针对不同的管道特性和腐蚀环境,采用合适的检测技术,能有效的确定腐蚀位置;选择合适的防腐措施,能有效的缓解油气管道的腐蚀。
第1章油气集输管道地面检测技术与案例分析
1.1油气集输管网地面检测概述
1.1.1油气集输管网的现状、隐患与问题
1.1.2开展油气集输管网地面检测的意义
1.1.3检测工作思路、检测项目与常用仪器
1.1.4地面探测技术
1.1.5外防腐层检测技术
1.1 6管体腐蚀损伤TEM地面检测技术
1.1.7泄漏及盗点检测判别技术
1.1.8上下管、平行管、交叉管、分支点、搭接点、变深点、截止点判别技术
1.1. 9集输管网检测的实际成效与作用
1.2河东线地面检测案例分析
1.2. 1项目概况
1.2.2检测过程回顾
1.2.3检测结论与分析
1.2.4经验与体会
1.2.5几点建议
1.3胜三区集输管网地面检测案例分析
1.3.1项目概况
1. 3.2检测与评价方案
1.3.3检测过程回顾
1.3.4检测结论与分析
1.3.5经验与体会
1. 3.6几点建议
1.4胜利油田繁华路段输油管道微量渗漏抢险检测案例分析
1.4.1项目概况
1.4.2检测过程回顾
1.4.3发现问题与泄漏点判别
1.4.4检测结论与分析
1.4.5经验与体会
1.4.6几点建议
1.5塔河油田三区、四区原油外输管道检测案例分析
1.5.1项目概况
1.5.2检测方案
1.5.3检测过程回顾
1.5.4检测结论与分析
1.5.5经验与体会
1.5.6几点建议
1.6中开线(主复线)穿越黄河管段检测案例分析
1.6.1项目概况
1.6.2检测与评价方案
1.6.3检测过程回顾
1.6.4现场实际检测工作经验总结
1.6 5检测结论与分析
1.6.6经验与体会
第2章油气长输管道地面检测技术与案例分析
2.1油气长输管道地面检测概述
2.1.1长输管道的特点
2.1.2开展油气长输管道地面检测工作的必要性
2.1.3检测工作思路、检测项目与常用仪器
2.1.4油气长输管道地面检测的常用技术与方法概述
2. 1.5阴极保护检测技术
2.1.6杂散电流检测技术
2.1.7磁应力检测技术
2.1. 8导波检测技术
2. 1. 9输气管道内腐蚀评估技术
2.2华北三条原油长输管道地面检测案例分析
2.2.1 项目概况
2.2.2检测过程回顾
2.2.3数据分析与处理
2.2.4检测结论与分析
2.2.5经验与体会
2.2.6几点建议
附录检测评价报告汇总页
2.3川气东送管道(鄂西管段)地面检测案例分析
2.3 1 项目概况
2.3.2检测与评价方案
2.3.3检测过程回顾
2.3.4现场实际检测工作经验总结
2.3.5检测结论与分析
2.3.6经验与体会
2.3.7几点建议
2.4中济线地面检测案例分析
2.4.1项目概况
2.4.2检测与评价方案
2.4.3检测过程回顾
2.4.4检测结论与分析
2.4.5经验与体会
2.4.6几点建议
附录检测评价报告汇总页
2.5苏南成品油管道地面检测案例分析
2.5.1项目概况
2.5.2检测过程回顾
2.5. 3检测结论与分析
2. 5.4经验与体会
2.5.5几点建议
第3章油气管道地面检测新技术
3.1交流电压梯度检测数据校正技术
3.1.1交流电压梯度检测原理及检测数据影响因素分析
3.1.2交流电压梯度检测试验研究及数据校正
3.1.3交流电压梯度数据校正技术应用案例
3.2金属磁记忆检测技术
3.2. 1金属磁记忆检测原理
3. 2.2金属磁记忆检测技术特点及常用检测设备
3.2.3金属磁记忆检测技术应用案例
3.3瞬变电磁检测技术
3.3.1瞬变电磁检测原理
3.3.2瞬变电磁检测系统构成
3.3.3连续式全覆盖瞬变电磁管道检测技术
3.3.4运用信号聚焦式加栽技术提高瞬变电磁检测精度
3. 3.5改进后的瞬变电磁检测技术应用案例
3.4超声导波检测技术
3 4.1超声导波检测原理
3.4.2超声导波检测系统构成
3.4 3超声导波信号处理及数据分析技术
3.4.4超声导波检测技术应用案例
附录管道检测常用的标准及法规摘录
附录A管道探测与占压检测
附录B管线敷设环境的检测
附录c防腐层检测
附录D防腐层修复
附录E管体检测
附录F阴极保护效果检测
附录G磁应力检测
附录H泄漏检测
附录I开挖验证
参考文献2100433B
《油气管道安全预警与泄漏检测技术》(作者中国石油管道公司)包括安全预警和泄漏检测两方面的内容,第一篇在分析目前油气管道安全问题的基础上,介绍了分布式光纤预警技术、声波监测预警技术、地震波监测预警技术、光纤光栅地质灾害预警技术。第二篇结合我国油气管道的现状,介绍了负压波和声波泄漏检测方法。
《油气管道安全预警与泄漏检测技术》可供管道设计、施工、运营相关工程技术人员使用,也可供油气管道科研及管理人员参考。
《油气管道全自动超声波检测技术》为国内一本有关管道环焊缝全自动超声波检测技术的培训教材,从焊接工艺角度分析了焊接原理以及常见典型缺陷的成因,在此基础上对相控阵超声波检测技术与分区检测方案的原理、设计方法以及现场实施情况进行了详细的论述。同时,结合计算机判读软件,阐述了如何对实际检测焊缝进行分析评判。为保障AUT检测技术的可靠性,结合实际开展的AUT工艺评定工作介绍了AUT工艺评定方法,有利于建立一套良好的全自动超声波检测质量控制体系,以保证管道工程的安全质量。
《油气管道全自动超声波检测技术》可作为油气长输管道环焊缝AUT检测人员或监理人员的培训教材,也可供与AUT检测工作相关人员阅读参考。