我国自1955年开展铀矿地质勘查工作以来,已探获的主要铀矿床类型有:
1)花岗岩型 此类型主要分布在桃山-诸广山矿化带,大多数与燕山期花岗岩有空间和成因关系。铀矿化多产于构造断裂的低级别构造中,其中以含沥青铀矿及晶质铀矿的硅酸盐单铀型矿床为主;其次为含沥青铀矿、萤石的硅酸盐铀-铅-锌矿床。
2)火山岩型 此类矿床主要分布在赣-杭矿化带,成矿时代多为侏罗纪及白垩纪。含矿岩石为熔岩、次火山岩、火山碎屑岩。矿化受区域断裂及火山构造控制。以沥青铀矿、硅钙铀矿的硅酸盐单铀矿床为主。此外也有一些含有较多的钛铀矿、铀石、钍铀矿的硅酸盐铀钍型矿床及铀铜矿床。
3)砂岩型 此类矿床产于中生代、新生代,赋存于含长石、石英砂岩及花岗质砂岩、砂砾岩,少数为粉砂岩、泥岩。岩石中常含有一定的有机质及黄铁矿。矿床以含沥青铀矿及吸附铀的硅酸盐型单铀矿床为主,其次为含沥青铀矿的碳酸盐铀铜矿床。
4)碳硅泥岩型 此类矿床含矿岩石复杂,一般富含有机质、泥质及黄铁矿。铀多以吸附状态存在。有震旦-寒武纪的含沥青铀矿的碳硅泥岩型矿床及泥盆纪的受构造控制的硅酸盐、碳酸盐型铀钼矿床。
5)含铀煤型 此类矿床主要产于中生代、新生代的陆相盆地中的劣质煤及碎屑岩,分布于滇西及西北地区。矿床受岩性控制,有含铀煤型及含铀-锗煤型。
6)其他类型 包括碳酸盐岩型、碱性岩型、石英岩型及磷块岩型等。
我国铀矿床以前四种类型为主。在已探明铀资源中,各类型矿床储量所占的比重为:花岗岩型38%,火山岩型22%,砂岩型19%,碳硅泥岩型16%,其他类型共5%。在已开采的铀矿山中,花岗岩型铀矿床的储量占总储量的37%,火山岩型占24%,碳硅泥岩型占22%,而砂岩型铀矿床占17%。
据已提交的近200多个矿床地质储量报告统计,现已探明铀金属几十万吨,其中矿床金属量大于2000吨的占矿床总数的12.9%,金属量占近一半;矿床金属量在1000~2000吨的占矿床总数的17.5%,金属量占26%,而矿床金属量在1000吨以下的占矿床总数的69.6%,金属量占27.2%。铀矿床规模普遍偏小,单个矿床储量在万吨(金属)以上的甚少。铀矿床矿体的埋藏深度较浅,一般小于300m,个别矿体向地下延伸达800m。
据铀矿地质系统1989年统计,矿床的平均品位0.115%。全国一半左右的矿床,其地质品位在0.10~0.20%之间。矿床平均品位大于0.3%的只占矿床总数的6%,矿床平均品位小于0.1%的占矿床总数的33%左右。
从以上综述看出,中国铀资源量的特点是,矿化类型多、规模小,埋藏浅、品位低。
中国铀矿冶工业创建于50年代末,1958年建立了主管铀矿冶工作的二机部十二局,同时成立了新疆矿冶公司和中南矿冶公司,组建了北京铀矿选冶研究所、铀矿冶设计研究院和铀矿开采研究所。第一批建设的铀矿冶企业,即:三矿(郴州铀矿、衡山大浦铀矿和上饶铀矿)一厂(衡阳铀水冶厂)于1962年9月至1963年10月陆续建成并顺利投产,实现了从矿石到UO2的工业生产,成功地解决了原子能工业的原料问题。在此期间,北京铀矿选冶研究所(现名:核工业北京化工冶金研究院)的科技人员,在国家还没有建成铀矿冶工业的情况下,用最快的速度生产出制备第一颗原子弹需要的UO2和UF4,为1964年10月我国第一颗原子弹爆炸成功作出了贡献。
1963年国家决定建立第二批铀矿冶企业,到1967年先后建成了广东和抚州两个铀矿冶联合企业,开发建设了新的铀矿、放射分选厂和铀水冶厂,包括:衢州铀矿、本溪铀矿(草河口)、修水铀矿、兴城铀矿和伊宁铀矿及水冶厂等。第二批铀矿冶企业的铀矿开采和提取的工艺流程都是我国自行研究设计的,采矿工艺方面,试验采用了水泥隔离墙代替人工矿柱,水泥垫板代替木垫板,研究解决了含铀煤矿的开采技术,改进了缓倾斜薄矿层的采矿工艺;水冶工艺方面,成功研究了处理各种不同类型矿石的多种工艺流程,包括:处理花岗岩型矿的固液分离-清液萃取流程,处理含铀煤矿的低温燃烧发电和从煤灰中浸出并用萃取法提取铀的流程,处理泥质矿的流态化分级洗涤技术,处理火山岩矿的半连续逆流离子交换和用磷类萃取剂萃取合格解吸液的淋萃流程,处理碱交代型花岗岩铀矿和含碳酸盐较多的碳硅泥岩铀矿的加压碱浸流程。
到70年代末,建设了第三批铀矿冶企业。在铀矿冶科研方面推广了喷锚支护等高效率的施工技术,开展了原地浸出的试验,成功研究了从矿石浸出液直接制备三碳酸铀酰铵或四氟化铀的新工艺,突破了从含磷、钼等复合矿石中提取铀的技术和从含铀富矿中提取镭的工艺流程。
从20世纪80年代中期开始,随着核工业的战略转移,铀产品由面向国防建设而转移到面向核电工业,国家对铀工业进行了大幅度的调整,部分生产线下马、关停,天然铀产量一度降到历史最低水平,整个行业出现了阶段性的萧条。要改变我国铀矿冶企业的面貌,提高经济效益,必须采用新的工艺技术对传统的采冶工艺进行改造。为此开展了地浸、堆浸、原地爆破浸出等新技术及其工业化应用研究,经过不懈努力,取得了多方面的技术成果,铀矿冶全行业的生产工艺流程和主要装备得到了更新,虽然铀矿冶企业大大减少,但总的产能还有所提升,企业劳动生产率、经济效益得到了大幅度的提高。铀矿冶生产已经形成了以地浸、堆浸、原地爆破浸出等工艺为主的新格局。目前,天然铀生产产量常规开采占25%~30%,堆浸占35%~40%,原地爆破浸出占10%~15%,地浸占20%~25%。
进入21世纪,随着核电的发展,天然铀的需求日益增长,同时国际铀价也持续攀升,给我国铀矿冶工业带来了新的发展机遇。作为国内唯一从事天然铀生产的企业-中核金原铀业有限责任公司正在抓紧实施天然铀生产大基地的战略,采用新工艺、新技术,进一步提升天然铀生产能力,满足核电发展的需要。
全国十几个省、市、自治区建设了若干座铀矿山和铀水冶厂,以及铀矿冶研究所、设计院、机修厂、建筑公司等,建立了完整的中国铀矿冶工业体系,为我国核工业发展打下了坚实基础。其业务范围包括铀矿开采、铀矿选冶、铀纯化、铀氧化物的生产、机械加工、放射性辐射防护、放射性环境评价、矿山退役治理等,目前主要生产的铀产品有重铀酸钠(铵)、三碳酸铀酰铵、过氧化铀、八氧化三铀、二氧化铀等。
堆浸是堆置浸出法的简称,是通过将稀的化学溶剂喷洒到预先堆置好的矿石堆上,选择性地溶解(浸出)矿石中的目标成分,形成离子或络合离子并使之转入溶液,以便进行进一步的提取或回收的浸出方法;堆浸的矿石仅需粗碎即可,溶液在矿堆中处于非饱和流状态。我国堆浸提铀技术研究始于上世纪60年代,经过几代铀矿冶科技工作者的不断努力探索,已经在许多技术领域取得了突破,一大批科研成果已成功应用于堆浸提铀工业生产,并且取得了显著的经济效益。堆浸提铀工艺是中国铀矿冶生产的主要工艺之一。
浓酸熟化高铁淋滤堆浸技术
该技术的特点是首先将破碎矿石进行浓酸熟化预处理,使矿石中的铁氧化为三价,铀大部分转化为可溶性盐,然后采用含硫酸高铁的清水进行淋浸。此工艺既缩短了矿石的浸出周期.也提高了浸出合格液的铀浓度。经多年的工业应用表明,采用浓酸熟化-高铁淋滤技术进行强化堆浸,矿石浸出周期仅60~100d,浸出合格液铀浓度可达7~9g/L。
低渗透性矿石制粒堆浸技术
低渗透性含泥矿石化学粘合进行酸法制粒,该粘合剂通过参与化学反应,可在矿粒内部形成以水化物晶核为基础的结晶结构网,从而大幅度提高了矿堆的渗透性。工业生产表明,矿石经过制粒预处理以后进行堆浸,金属的浸出率95%以上,与直接堆浸相比较,浸出周期缩短70%,浸出合格液铀浓度提高50%。
细粒级矿石堆浸技术
经过对堆浸传质机理及浸出过程进行深入分析研究,提出了细粒级矿石堆浸的概念,认为堆浸矿石的破碎应该存在一个最佳经济粒度,在充分试验的基础上,推导出了堆浸矿石破碎的经济粒度计算模型。目前,该研究成果已经在多个堆浸铀矿山得到了应用。
串联堆浸技术
为了尽可能提高矿石堆浸合格液铀浓度,降低原材料消耗,针对多种铀矿石进行了系统的串联堆浸技术试验研究,开发了计算矿石串联堆浸各阶段操作参数的数学模型。多个堆浸提铀矿山的应用结果表明,在使用该技术以后,堆浸合格液的铀浓度可提高2~3倍,浸出过程的酸、氧化剂以及金属回收工序的材料消耗可降低20%~30%。
细菌氧化堆浸技术
中国对于细菌氧化堆浸提铀技术的研究始于20世纪60年代,主要是利用氧化亚铁硫杆菌对矿石中的黄铁矿或吸附尾液中的Fe2+进行氧化使Fe2+转变成Fe3+,从而完成对矿石中低价铀的氧化浸出。已进行了4000t规模的工业试验。工业试验结果表明,采用细菌氧化堆浸与常规氧化堆浸相比,硫酸消耗可降低12.5%,浸出时间可缩短32%~45%、浸出液铀浓度可提高88.2%。
伴生铀矿综合堆浸回收技术
目前已探明的铀矿资源中,铀钼共生矿床占有一定的比例,此类型矿床在常规浸出时往往浸出时间长、钼的浸出率低,并且浸出液中铀钼的分离效果不够理想。采用拌酸熟化及活化浸出技术对矿石进行堆浸处理,使矿石的浸出周期缩短了一半以上,铀的浸出率达到90%,钼的浸出率达到70%以上,并采用新型的离子交换树脂从浸出液中同时吸附铀钼,通过分步淋洗使铀钼的分离系数达到2000以上。
渗滤浸出提铀
对于一些铁、镁、钙、铝等杂质含量高的复杂铀矿,常规堆浸过程中,堆内溶液的酸度随着溶液的运移会不断消耗,导致铁、镁、钙、铝在堆内不断地迁移一积累一沉淀,使矿堆板结,降低了矿堆的渗透性。渗滤浸出工艺由于改变了溶液与矿石的接触方式,可保持溶液酸度的相对稳定,有效地避免矿堆板结。工业试验表明,采用渗滤浸出工艺代替堆浸工艺以后,矿石的浸出周期从300d以上降低到了60d以内,铀浸出率从60%左右提高到90%以上。
铀矿冶地浸采铀
地浸出采铀(简称地浸采铀)是一种在天然埋藏条件下,通过溶浸液与矿物的化学反应选择性地溶解矿石中的铀,而不使矿石产生位移的集采、冶于一体的新型铀矿开采方法。它一改过去常规矿山的生产模式,没有昂贵而繁重的井巷或剥离工程,也没有矿石运输、选矿、破碎和尾矿坝建设等工序;被采的是矿石,但采出的是含有有用组分的溶液。地浸采铀具有工艺简单,基建投资少、生产成本低、环境保护和安防条件好,资源利用率高等优点,这一采矿新领域已受到世界采矿业的普遍关注。
地浸采铀是通过从地表钻进至含矿层的注液井将按一定比例配制好的溶浸液注入到矿层,注入的溶浸液与矿石中的有用成分接触发生化学反应,生成的可溶性化合物在扩散和对流作用下离开化学反应区进入沿矿层渗透迁移的溶液液流中形成浸出液;浸出液经过矿层从抽液井提升至地表,抽出的浸出 液输送至回收车间进行离子交换等工艺处理,最后得到合格产品。原地浸出采铀原理如图1所示。
我国地浸采铀技术的研究始于七十年代初,通过多年的试验研究,地浸采铀已成为我国铀矿采冶的重要方法,主要工艺技术指标达到国际水平。形成了一套以地浸铀资源评价、溶浸液配方和使用方法、地浸钻孔结构与施工工艺、钻孔排列方式和钻孔间距的确定、溶浸范围控制、浸出液处理工艺技术、地浸矿山环境保护等为主体的地浸采铀技术体系。
当前铀矿冶所面临的最大问题是矿石品位不断降低和开采深度日益加深,处理矿性日益复杂,采冶难度加大,生产成本越来越高。大量品位低、难处理的边际经济、次边际经济以及内蕴经济型的铀资源将逐渐成为开发利用的主体,这些低品位资源采用常规的开采技术难以经济利用,只有依靠新工艺、新技术、新设备、新材料的开发应用,在不断降低我国天然铀提取生产的投资和成本、提高提铀生产效率的基础上,才能逐步扩大铀矿资源的开发利用范围,拓展我国可供开发提取的铀资源量。
1、 开展硬岩铀矿采冶新技术研究,提高硬岩铀矿采冶技术水平和资源利用率
2、 开展低渗透砂岩铀矿床地浸采冶技术研究,提高砂岩铀矿资源的利用水平
3 、开发深部开采技术,实现深部铀矿资源高效利用
4、 发展铀矿采冶过程控制的基础理论,推动铀矿采冶技术创新
5、 加强矿山信息技术研究,推进数字矿山建设
6 、加强环境保护与治理,促进铀矿冶可持续发展
介绍了江西某铀矿冶工程的地质、地貌、水文条件及工程建设方案;分析了工程的主要污染源;详细阐述了对工程的环境保护措施;预测并评价了主要污染源对环境的可能影响;给出了主要评价结论并提出了解决污染问题的方案。
现批准《核工业铀矿冶工程设计规范》为国家标准,编号为GB50521--2009,自2010年4月1日起实施。其中,第4.5.3(3)、5.4.2、5.4.7、17.2.2条(款)为强制性条文,必须严格执行。
《铀矿冶设施退役与环境治理》由原子能出版社出版。
本规范规定了对铀矿冶退役项目环境影响报告书中环境质量及监测进行技术审评的审评范围、审评要点和接受准则。
本规范适用于核与辐射环境影响评估单位对铀矿冶退役项目环境影响报告书中环境质量及监测进行技术审评,铀地质勘探退役治理项目环境评价文件的审评可以参照使用。 2100433B
本规范规定了对铀矿冶退役项目环境影响报告书进行技术审评的一般程序、基本原则、审评范围、要点和接受准则。
本规范适用于核与辐射环境影响评估单位对铀矿冶退役项目环境影响报告书进行技术审评,铀地质勘探退役治理项目环境评价文件的审评可以参照使用。