(1)压电常数是衡量材料压电效应强弱的参数, 它直接关系到压电输出的灵敏度。

(2)压电材料的弹性常数、 刚度决定着压电器件的固有频率和动态特性。

(3)对于一定形状、 尺寸的压电元件, 其固有电容与介电常数有关; 而固有电容又影响着压电传感器的频率下限。

(4)在压电效应中,机械耦合系数等于转换输出能量(如电能)与输入的能量(如机械能)之比的平方根; 它是衡量压电材料机电能量转换效率的一个重要参数。

(5)压电材料的绝缘电阻将减少电荷泄漏, 从而改善压电传感器的低频特性。

(6)压电材料开始丧失压电特性的温度称为居里点温度。

压电式传感器造价信息

市场价 信息价 询价
材料名称 规格/型号 市场价
(除税)
工程建议价
(除税)
行情 品牌 单位 税率 供应商 报价日期
氨氮PH传感器 XRP6714DK 查看价格 查看价格

南京新锐鹏

13% 株洲中车机电科技有限公司
COD传感器 XRP6602D 查看价格 查看价格

南京新锐鹏

13% 株洲中车机电科技有限公司
氨氮PH传感器 型号:DNH1000 查看价格 查看价格

天健创新

13% 天健创新(北京)监测仪表股份有限公司
SS传感器 型号:IDT1000 查看价格 查看价格

天健创新

13% 天健创新(北京)监测仪表股份有限公司
COD传感器 型号:UVC1000 查看价格 查看价格

天健创新

13% 天健创新(北京)监测仪表股份有限公司
SS传感器 XRP7801D 查看价格 查看价格

南京新锐鹏

13% 株洲中车机电科技有限公司
无磁发讯传感器 NWM-HRI(配套WS系列水表) 查看价格 查看价格

宁波

13% 宁波水表股份有限公司
磁发讯传感器 HRI40-125(配套WPD系列水表) 查看价格 查看价格

宁波

13% 宁波水表股份有限公司
材料名称 规格/型号 除税
信息价
含税
信息价
行情 品牌 单位 税率 地区/时间
臭氧传感器 查看价格 查看价格

广东2022年1季度信息价
噪声传感器 查看价格 查看价格

广东2022年1季度信息价
噪声传感器 查看价格 查看价格

广东2021年4季度信息价
噪声传感器 查看价格 查看价格

广东2021年2季度信息价
臭氧传感器 查看价格 查看价格

广东2020年4季度信息价
臭氧传感器 查看价格 查看价格

广东2020年3季度信息价
噪声传感器 查看价格 查看价格

广东2020年1季度信息价
噪声传感器 查看价格 查看价格

广东2022年3季度信息价
材料名称 规格/需求量 报价数 最新报价
(元)
供应商 报价地区 最新报价时间
86寸会议一体机主要参数 6 个麦克风,8 米有效拾音距离.采用 2×10W(中高音)+20W(低音)发声 扬声.整机屏幕采用 86 英寸 UHD 超高清 LED 液晶屏,显示比例 16:9,屏幕图像分辨率达 3840×|1套 3 查看价格 深圳优伟视科技有限公司 广东   2022-08-31
75寸会议一体机主要参数 设备系统使用 B/S 架构,支持 IE、Firefox、Chrome 等流浏览,支持 Windows、 Novell SUSE Linux 操作系统和 SQL Server 2)、系统可靠性|3套 3 查看价格 深圳优伟视科技有限公司 广东   2022-08-31
75寸会议一体机主要参数 6 个麦克风,8 米有效拾音距离.采用 2×10W(中高音)+20W(低音)发 声扬声,具有全功能 Type-C 接口,可支持手机充、音视频信号传输、外部设备调用本机 摄像头、麦克风及扬声,I|6个 3 查看价格 广州乐教电子科技有限公司 广东  阳江市 2022-08-10
86寸会议一体机主要参数 6 个麦克风,8 米有效拾音距离.采用 2×10W(中高音)+20W(低音)发声 扬声.整机屏幕采用 86 英寸 UHD 超高清 LED 液晶屏,显示比例 16:9,屏幕图像分辨率达 3840×|4个 3 查看价格 广州乐教电子科技有限公司 广东  阳江市 2022-08-10
客房主要木皮 WD 2001 定制颜色型号:榆木816 表面做法:哑光半封闭漆+硬化漆|45.1347m² 3 查看价格 广州市望京山木业有限公司    2015-07-02
主要空间入口名称 2800×300×23|50个 3 查看价格 广州市匠能金属制品有限公司 广东   2022-03-08
主要出入口 30cm×10cm|5个 1 查看价格 广州市大仟装修材料有限公司 广东  广州市 2017-08-30
主要诊疗科牌 /|1套 3 查看价格 广东双子标识科技有限公司 全国   2019-10-31

压电式传感器压电效应

压电效应可分为正压电效应和逆压电效应。正压电效应是指:当晶体受到某固定方向外力的作用时,内部就产生电极化现象,同时在某两个表面上产生符号相反的电荷;当外力撤去后,晶体又恢复到不带电的状态;当外力作用方向改变时,电荷的极性也随之改变;晶体受力所产生的电荷量与外力的大小成正比。压电式传感器大多是利用正压电效应制成的。逆压电效应是指对晶体施加交变电场引起晶体机械变形的现象,又称电致伸缩效应。用逆压电效应制造的变送器可用于电声和超声工程。压电敏感元件的受力变形有厚度变形型、长度变形型、体积变形型、厚度切变型、平面切变型 5种基本形式(见图)。压电晶体是各向异性的,并非所有晶体都能在这 5种状态下产生压电效应。例如石英晶体就没有体积变形压电效应,但具有良好的厚度变形和长度变形压电效应。

压电式传感器压电材料

它可分为压电单晶、压电多晶和有机压电材料。压电式传感器中用得最多的是属于压电多晶的各类压电陶瓷和压电单晶中的石英晶体。其他压电单晶还有适用于高温辐射环境的铌酸锂以及钽酸锂、镓酸锂、锗酸铋等。压电陶瓷有属于二元系的钛酸钡陶瓷、锆钛酸铅系列陶瓷、铌酸盐系列陶瓷和属于三元系的铌镁酸铅陶瓷。压电陶瓷的优点是烧制方便、易成型、耐湿、耐高温。缺点是具有热释电性,会对力学量测量造成干扰。有机压电材料有聚二氟乙烯、聚氟乙烯、尼龙等十余种高分子材料。有机压电材料可大量生产和制成较大的面积,它与空气的声阻匹配具有独特的优越性,是很有发展潜力的新型电声材料。60年代以来发现了同时具有半导体特性和压电特性的晶体,如硫化锌、氧化锌、硫化钙等。利用这种材料可以制成集敏感元件和电子线路于一体的新型压电传感器,很有发展前途。

压电式传感器大致可以分为4种,即:压电式测力传感器,压电式压力传感器,压电式加速度传感器及高分子材料压力传感器。

压电式传感器正压电效应

某些物质,当沿着一定方向对其加力而使其变形时,在一定表面上将产生电荷,当外力去掉后,又重新回到正常的不带电状态,这种现象称为正压电效应 。

压电式传感器逆压电效应

如果在这些物质的极化方向施加电场,这些物质就在一定方向上产生机 械变形或机械应力,当外电场撤去时,这些变形或应力也随之消失,这种现 象称之为逆压电效应,或称之为电致伸缩效应。

压电式传感器压电材料

明显呈现压电效应的敏感功能材料叫压电材料 。

压电单晶体,如石英、酒石酸钾钠等;

多晶压电陶瓷, 如钛酸钡、锆钛酸铅、铌镁酸铅等,又称为压电陶瓷。此外,聚偏二氟乙烯(PVDF) 作为一种新型的高分子物性型传感材料得到广泛的应用。

压电关系表达式:Q=d*F,其中d:压电常数

更一般表达式:电荷密度q  ,(用单位面积受力表示)

其中:i=1,2,3表示晶体极化方向,指的是与产生电荷的面垂直的方向;j=1,2,3,4,5,6表示受力方向,1~3表示x,y.z向受力,4~6表示剪切力方向

如q1表示法向矢量为x的两个面产生的电荷

受x向(拉)力作用后在z方向产生电荷的表达式:

受z向力作用后在z方向产生电荷的表达式:

各表达式见图片:

压电式传感器主要参数常见问题

  • 压电式传感器的应用

    压电传感器应用类型中以力敏感类型居多,可以直接利用其测量力,压力,加速度,位移等物理量。 力敏型,如微拾音器,声呐,应变仪,点火器,血压计,压电陀螺,压力和加速度传感器等。

  • 压电式传感器原理

    压电式传感器是基于压电效应的传感器。 原理是:某些物质,当沿着一定方向对其加力而使其变形时,在一定表面上将产生电荷,当外力去掉后,又重新回到不带电状态,这种现象称为 压电效应 。 ...

  • 压电式传感器是不是更适用于静态测量?

    压电式传感器不是更适用于静态测量。因为压电式传感器属于加速度型传感器,静态没有加速度,所以不能测量静态的信号,匀速运动也不能测。压电传感器是利用某些电介质受力后产生的压电效应制成的传感器。所谓压电效应...

石英(SiO2)晶体结晶形状为六角形晶柱。两端为一对称的棱锥,六棱柱是它的基本组织,纵轴 z-z 称作光轴,通过六角棱线而垂直于光轴的轴线 x-x 称作电轴,垂直于棱面的轴线 y-y 称作机械轴。如果从晶体中切下一个平行六面体,并使其晶面分别平行于 z-z 、y-y 、x-x轴线,这个晶片在正常状态下不呈现电性。当施加外力时,将沿 x-x 方向形成电场,其电荷分布在垂直于 x-x 轴的平面上

石英的化学式为 SiO2 ,在一个晶体单元中,有三个硅离子和六个氧离子 ,后者是成对的,所以一个和两个交替排列。

当没有力作用时,硅离子和氧 离子在垂直于晶体 Z 轴的 XY 平面上的投影恰好等效为正六边形排列,如上图 a 示。这时正负离子正好分布在正六边形的顶角上,呈现电中性。如果沿 X 方向压缩,如上图 b 所示,则硅离子 1 被挤入氧离子 2 和 6 之间,而氧离子 4 被挤入硅离子 3 和 5 之间,结果表面 A 上呈现负电荷,而在表面 B 上呈现正电荷。这一现象称为纵向压电效应。

..若沿 Y 方向压缩,如上图 c 所示,硅离子 3 和氧离子 2 ,以及硅离子 5 和氧离子 6 都向内移动同样的数值,故在电极 C 和 D 上不呈现电荷,而在表面 A 和 B 上, 即在 X 轴的端面上又呈现电荷,但与图 b 的极性正好相反,这时称为横向压电效应。从研究的模型同样可以看出:如果是使其伸长而不是压缩时,则电荷的极性正好相反。总之,石英等单晶体材料是各向异性的物体,在 X 或 Y 轴向施力时,在与 X 轴垂直的 面上产生电荷,电场方向与 X 轴平行,在 Z 轴方向施力时,不能产生压电效应。

石英的晶体结构为六方晶体系,化学式为SiO2。

定义:

x:两平行柱面内夹角等分线,垂直此轴压电效应最强,称为电轴。

y :垂直于平行柱面,在电场作用下变形最大,称为机械轴。

z :无压电效应,中心轴,也称光轴。

当在电轴方向施加作用力时, 在与电轴 x 垂直的平面上将产生电荷, 其大小为Qx = d11 Fx。

式中: d11——x方向受力的压电系数

Fx——作用力

若在同一切片上, 沿机械轴y方向施加作用力Fy, 则仍在与x轴垂直的平面上产生电荷qy, 其大小为Qy=d12Fy a/b

式中: d12——y轴方向受力的压电系数

d12=-d11

a、 b——晶体切片长度和厚度

(1)当石英晶体未受外力作用时, 正、负离子正好分布在正六边形的顶角上, 形成三个互成120°夹角的电偶极矩P1、 P2、P3, P1 P2 P3 = 0, 所以晶体表面不产生电荷, 即呈中性。

(2)当石英晶体受到沿x轴方向的压力作用时, 晶体沿x方向将产生压缩变形,正负电荷重心不再重合,在x轴的正方向出现正电荷, 电偶极矩在y方向上的分量仍为零, 不出现电荷。

(3)当晶体受到沿y轴方向的压力作用时,在x轴上出现电荷, 它的极性为x轴正向为负电荷。在y轴方向上不出现电荷。

(4)如果沿z轴方向施加作用力, 因为晶体在x方向和y方向所产生的形变完全相同, 所以正负电荷重心保持重合, 电偶极矩矢量和等于零。这表明沿z轴方向施加作用力, 晶体不会产生压电效应。

压电晶体与压电陶瓷的比较:

相同点:都是具有压电效应的压电材料。

不同点:石英的优点是它的介电和压电常数的温度稳定性好,适合做工作温度范围很宽的传感器。极化后的压电陶瓷,当受外力变形后,由于电极矩的重新定位而产生电荷,压电陶瓷的压电系数是石英的几十倍甚至几百倍,但稳定性不如石英好,居里点也低。

1、电容效应等效原理

1)压电式传感器结构

..在压电晶片的两个工作面上进行金属蒸镀,形成金属膜,构成两个电极, 如图所示。

2)等效电容量

当压电传感器受到沿其敏感轴向的外力作用时,就在两电极上产生极性相反的电荷,因此它相当于一个电荷源(静电发生器)。由于压电晶体是绝缘体,当它的两极表面聚集电荷时,它又相当于一个电容器,其电容量为沿 x 轴方向加力产生纵向压电效应,沿 y 轴加力产生横向压电效应,沿相对两平面加力产生切向压 电效应。

3)等效电压

当压电晶体受外力作用时,两表面产生等量的正、负电荷 Q ,可求出其开路电压(负载电阻为无穷大时)

..1)、压电式传感器既可等效为电荷源又可等效为电容器,其等效电路可认为是二者的并联,如下图(a)所示;也可认为是一个电压源和一个电容器串联,如下图(b)所示。其中 Ra为压电元件的漏电阻.

2)、压电式传感器测试系统等效电路

..压电式传感器工作时,需与二次仪表配套使用

,此时的等效电路如下图所示。图中Cc为传感器电缆电容,Ri为放大器输入电阻,Ci为输入电容。

单片压电晶片难以产生足够的表面电荷,在压电式传感器中常采用两片或两片以上压电晶片组合在一起使用。由于压电晶体是有极性的,因而两片压电晶体构成的传感器有两种接法:串联和并联 .

压电式测力传感器

压电式测力传感器是利用压电元件直接实现力-电转换的传感器,在拉、压场合,通常较多采用双片或多片石英晶体作为压电元件。其刚度大,测量范围宽,线性及稳定性高,动态特性好。当采用大时间常数的电荷放大器时,可测量准静态力。按测力状态分,有单向、双向和三向传感器,它们在结构上基本一样。

图所示为压电式单向测力传感器的结构图。传感器用于机床动态切削力的测量。绝缘套用来绝缘和定位。基座内外底面对其中心线的垂直度、上盖及晶片、电极的上下底面的平行度与表面光洁度都有极严格的要求,否则会使横向灵敏度增加或使片子因应力集中而过早破碎。为提高绝缘阻抗,传感器装配前要经过多次净化(包括超声波清洗),然后在超净工作环境下进行装配,加盖之后用电子束封焊。

压电式压力传感器的结构类型很多,但它们的基本原理与结构仍与压电式加速度和力传感器大同小异。突出的不同点是,它必须通过弹性膜、盒等,把压力收集、转换成力,再传递给压电元件。为保证静态特性及其稳定性,通常多采用石英晶体作为压电元件。

压电式加速度传感器

图所示为压缩式压电加速度传感器的结构原理图,压电元件一般由两片压电片组成。在压电片的两个表面上镀银层,并在银层上焊接输出引线,或在两个压电片之间夹一片金属,引线就焊接在金属片上,输出端的另一根引线直接与传感器基座相连。在压电片上放置一个比重较大的质量块,然后用一硬弹簧或螺栓、螺帽对质量块预加载荷。整个组件装在一个厚基座的金属壳体中,为了隔离试件的任何应变传递到压电元件上去,避免产生假信号输出,所以一般要加厚基座或选用刚度较大的材料来制造。

测量时,将传感器基座与试件刚性固定在一起。当传感器感受到振动时,由于弹簧的刚度相当大,而质量块的质量相对较小,可以认为质量块的惯性很小,因此质量块感受到与传感器基座相同的振动,并受到与加速度方向相反的惯性力作用。这样,质量块就有一正比于加速度的交变力作用在压电片上。由于压电片具有压电效应,因此在它的两个表面上就产生了交变电荷(电压),当振动频率远低于传感器固有频率时,传感器的输出电荷(电压)与作用力成正比,即与试件的加速度成正比。输出电量由传感器输出端引出,输入到前置放大器后就可以用普通的测量器测出试件的加速度,如在放大器中加进适当的积分电路,就可以测出试件的振动加速度或位移。

压电式金属加工切削力测量

主要用于金属加工切削力测量。

压电式玻璃破碎报警器

主要用于璃破碎报警器。

2100433B

压电式传感器主要参数文献

油浸式变压器主要参数 (4) 油浸式变压器主要参数 (4)

格式:pdf

大小:52KB

页数: 2页

评分: 4.6

主要技术参数 10kV 级 S11 系列配电 变压器 额定容量 (kVA) 电压组合 (kV) 联结 组 标号 短路 阻抗 (%) 损耗 (kW) 空载 电流 (%) 重量(kg) 外形尺寸 (mm) 长(L) ×宽(B)×高(H) 规矩 (mm) 纵向×横向 高 压 分接 范围 低 压 空 载 负 载 器 身 重 油 重 总 重 10 11 10.5 10 6.3 6 ±5 0.4 Yyn0 4.0 0.06 0.33 2.5 120 55 220 660×430×870 400×400 20 0.08 0.46 2.0 140 65 260 700×450×910 400×400 30 0.10 0.68 1.6 160 70 280 740×460×930 400×400 50 0.13 0.98 1.5 220 80 365 770×500×98

立即下载
油浸式变压器主要参数 油浸式变压器主要参数

格式:pdf

大小:52KB

页数: 3页

评分: 4.7

主要技术参数 10kV级 S11系列配电 变压器 额定容量 (kVA) 电压组合 (kV) 联结 组 标号 短路 阻抗 (%) 损耗 (kW) 空载 电流 (%) 重量(kg) 外形尺寸 (mm) 长(L) ×宽(B)×高 (H) 规矩 (mm) 纵向×横向 高 压 分接 范围 低 压 空 载 负 载 器 身 重 油 重 总 重 10 11 10 6 ±5 Yyn0 120 55 220 660×430×870 400×400 20 140 65 260 700×450×910 400×400 30 160 70 280 740×460×930 400×400 50 220 80 365 770×500×980 400×400 63 255 88 420 810×560×1000 400×400 80 290 95 480 845×650×1100 400×400 100 325

立即下载

压电式传感器是利用弹簧质量系统原理。敏感芯体质量受振动加速度作用后产生一个与加速度成正比的力,压电材料受此力作用后沿其表面形成与这一力成正比的电荷信号。压电式加速度传感器具有动态范围大、频率范围宽、坚固耐用、受外界干扰小以及压电材料受力自产生电荷信号不需要任何外界电源等特点,是被最为广泛使用的振动测量传感器。虽然压电式加速度传感器的结构简单,商业化使用历史也很长,但因其性能指标与材料特性、设计和加工工艺密切相关,因此在市场上销售的同类传感器性能的实际参数以及其稳定性和一致性差别非常大。与压阻和电容式相比,其最大的缺点是压电式加速度传感器不能测量零频率的信号。

本书系统阐述了磁敏感元器件和磁传感器、压电式传感器、压阻式传感器等物理传感器结构、工作原理和特性,介绍了硅各向异性腐蚀技术、传感器集成化及传感器CAD等传感器技术。

(1)高输出阻抗型

这类传感器一般输出信号微弱、输出阻抗高。如压电式传感器,输出信号是微弱的电荷量,而输出阻抗高达10^8Ω以上;电流电离室代表被测量变化的输出电离电流(nA级),输出阻抗为电离室两极间的漏电阻。

传感器电路的作用有两方面:一是能吸收信号源的输出信号并进行一定变换和放大,将信号变换成电路易于处理的形式;二是阻抗变换,将传感器的高输出阻抗变换成低输出阻抗。这就要求传感器电路具有很高的输入阻抗和尽可能低的输出阻抗,同时还具有低噪声、低漂移、抗干扰能力强的特点。

(2)低输出阻抗型

这类传感器的输出阻抗较低,输出信号形式多种多样。这种传感器的后接电路,它的作用一般是将信号不失真地变换成较强的电压或电流信号,在它的性能上对稳定性、抗干扰能力等方面考虑较多。

压电式传感器相关推荐
  • 相关百科
  • 相关知识
  • 相关专栏