中文别名:3-吲哚乙酸; 吲哚-3-乙酸; 吲哚-3-乙酸(IUPAC); 3-吲哚乙酸; β-吲哚乙酸; 2-(3-吲哚基)乙酸; IH-Indole-3-acetic acid
英文别名:Heteroauxin; indol-3-ylacetic acid; Indole-3-acetic acid IAA; Indole-3-acetic Acid (1.00353); Indole-3-acetic acid,(Heterauxin; Indolyl-3-acetic acid); Heterauxin; Indolyl-3-acetic acid; Indole-3-acetic acid; 3-Indoleacetic acid(IAA); 3-Indoleacetic acid; IAA; IH-Indole-3-acetic acid; 3-Indole acetic acid; 3-indolylacetic acid; 1H-indol-3-ylacetate
S24/25Avoid contact with skin and eyes.
避免与皮肤和眼睛接触。
S22 Do not breathe dust.
切勿吸入粉尘。
R36/37/38 Irritating to eyes, respiratory system and skin.
刺激眼睛、呼吸系统和皮肤。
吲哚乙酸是一种植物体内普遍存在的内源生长素,属吲哚类化合物。又名茁长素、生长素、异生长素。
吲哚乙酸是一种有机物。 纯品是无色叶状晶体或结晶性粉末。遇光后变成玫瑰色。 熔点165-166℃(168-170℃)。 易溶于无水乙醇、醋酸乙酯、二氯乙烷,可溶于乙醚和丙酮。不溶于苯、甲苯、汽油及氯仿。不溶于水,其水溶液能被紫外光分解,但对可见光稳定。其钠盐、钾盐比酸本身稳定,极易溶于水。 易脱羧成3-甲基吲哚(粪臭素)。对植物生长具有两重性,植物不同部位对其敏感度不同,一般根大于芽大于茎。不同植物对其敏感度也不同。
由吲哚、甲醛与氰化钾在150℃,0.9~1MPa下反应生成3-吲哚乙腈,再在氢氧化钾作用下水解生成。 或由吲哚与羟基乙酸反应而得。在3L不锈钢高压釜中,加入270g(4.1mol)85%在氢氧化钾,351g(3mol)吲哚,然后慢慢地加入360g(3.3mol)70%的羟基乙酸水溶液。密闭加热至250℃,搅拌18h。冷却至50℃以下,加入500ml水,再在100℃搅拌30min以溶解吲哚3-乙酸钾。冷却至25℃,将高压釜物料倒入水中,加水至总体积为3L。用500ml乙醚萃取,分取水层,在20-30℃加盐酸酸化,析出吲哚-3-乙酸沉淀。过滤,冷水洗涤,避光干燥,得产品455-490g。
吲哚-3-乙酸生长素介绍
生长素(auxin)是一类含有一个不饱和芳香族环和一个乙酸侧链的内源激素,英文简称IAA,国际通用,是吲哚乙酸(IAA)。1934年,郭葛等确定它为吲哚乙酸,因而习惯上常把吲哚乙酸作为生长素的同义词。 生长素在扩展的幼嫩叶片和顶端分生组织中合成,通过韧皮部的长距离运输,自上而下地向基部积累。根部也能生产生长素,自下而上运输。植物体内的生长素是由色氨酸通过一系列中间产物而形成的。其主要途径是通过吲哚乙醛。吲哚乙醛可以由色氨酸先氧化脱氨成为吲哚丙酮酸后脱羧而成,也可以由色氨酸先脱羧成为色胺后氧化脱氨而形成。然后吲哚乙醛再氧化成吲哚乙酸。另一条可能的合成途径是色氨酸通过吲哚乙腈转变为吲哚乙酸。 在植物体内吲哚乙酸可与其它物质结合而失去活性,如与天冬氨酸结合为吲哚乙酰天冬氨酸,与肌醇结合成吲哚乙酸肌醇,与葡萄糖结合成葡萄糖苷,与蛋白质结合成吲哚乙酸-蛋白质络合物等。结合态吲哚乙酸常可占植物体内吲哚乙酸的50~90%,可能是生长素在植物组织中的一种储藏形式,它们经水解可以产生游离吲哚乙酸。 植物组织中普遍存在的吲哚乙酸氧化酶可将吲哚乙酸氧化分解。 生长素有多方面的生理效应,这与其浓度有关。低浓度时可以促进生长,高浓度时则会抑制生长,甚至使植物死亡,这种抑制作用与其能否诱导乙烯的形成有关。生长素的生理效应表现在两个层次上。 在细胞水平上,生长素可刺激形成层细胞分裂;刺激枝的细胞伸长、抑制根细胞生长;促进木质部、韧皮部细胞分化,促进插条发根、调节愈伤组织的形态建成。 在器官和整株水平上,生长素从幼苗到果实成熟都起作用。生长素控制幼苗中胚轴伸长的可逆性红光抑制;当吲哚乙酸转移至枝条下侧即产生枝条的向地性;当吲哚乙酸转移至枝条的背光侧即产生枝条的向光性;吲哚乙酸造成顶端优势;延缓叶片衰老;施于叶片的生长素抑制脱落,而施于离层近轴端的生长素促进脱落;生长素促进开花,诱导单性果实的发育,延迟果实成熟。有人提出激素受体的概念。激素受体是一个大分子细胞组分,能与相应的激素特异地结合,尔后发动一系列反应。吲哚乙酸与受体的复合物有两方面的效应:一是作用于膜蛋白,影响介质酸化、离子泵运输和紧张度变化,属于快反应(〈10分钟〉;二是作用于核酸,引起细胞壁变化和蛋白质合成,属于慢反应()10分钟)。介质酸化是细胞生长的重要条件。吲哚乙酸能活化质膜上ATP(腺苷三磷酸)酶,刺激氢离子流出细胞,降低介质pH值,于是有关的酶被活化,水解细胞壁的多糖,使细胞壁软化而细胞得以扩伸。 施用吲哚乙酸后导致特定信使核糖核酸(mRNA)序列的出现,从而改变了蛋白质的合成。吲哚乙酸处理还改变了细胞壁的弹性,使细胞的生长得以进行。 生长素对生长的促进作用主要是促进细胞的生长,特别是细胞的伸长,对细胞分裂没有影响。植物感受光刺激的部位是在茎的尖端,但弯曲的部位是在尖端的下面一段,这是因为尖端的下面一段细胞正在生长伸长,是对生长素最敏感的时期,所以生长素对其生长的影响最大。趋于衰老的组织生长素是不起作用的。生长素能够促进果实的发育和扦插的枝条生根的原因是:生长素能够改变植物体内的营养物质分配,在生长素分布较丰富的部分,得到的营养物质就多,形成分配中心。生长素能够诱导无籽番茄的形成就是因为用生长素处理没有受粉的番茄花蕾后,番茄花蕾的子房就成了营养物质的分配中心,叶片进行光合作用制造的养料就源源不断地运到子房中,子房就发育了。
生长素主要的合成部位是具分生能力的组织,主要是的幼嫩芽、叶和发育中的种子。生长素在植物体内的各器官都有分布,但相对集中分布在生长旺盛的部位,如胚芽鞘、芽、根顶端的分生组织、形成层、发育中的种子和果实等处。 生长素在植物体中运输有三种方式:横向运输、极性运输、非极性运输。横向运输(单侧光照引起的胚芽鞘尖端中的生长素背光运输、横放时植物根与茎中生长素的近地侧运输)。极性运输(从形态学上端运输到形态学下端)。非极性运输(在成熟组织中,生长素可以通过韧皮部进行非极性运输)。
较低浓度促进生长,较高浓度抑制生长。植物不同的器官对生长素最适浓度的要求是不同的。根的最适浓度约为10E-10mol/L,芽的最适浓度约为10E-8mol/L,茎的最浓度约为10E-5mol/L。在生产上常常用生长素的类似物(如萘乙酸、2,4-D等)来调节植物的生长如生产豆芽菜时就是用适宜茎生长的浓度来处理豆芽,结果根和芽都受到抑制,而下胚轴发育成的茎很发达。植物茎生长的顶端优势是由植物对生长素的运输特点和生长素生理作用的两重性两个因素决定的,植物茎的顶芽是产生生长素最活跃的部位,但顶芽处产生的生长素浓度通过主动运输而不断地运到茎中,所以顶芽本身的生长素浓度是不高的,而在幼茎中的浓度则较高,最适宜于茎的生长,对芽却有抑制作用。越靠近顶芽的位置生长素浓度越高,对侧芽的抑制作用就越强,这就是许多高大植物的树形成宝塔形的原因。但也不是所有的植物都具有强烈的顶端优势,有些灌木类植物顶芽发育了一段时间后就开始退化,甚至萎缩,失去原有的顶端优势,所以灌木的树形是不成宝塔形的。由于高浓度的生长素具有抑制植物生长的作用,所以生产上也可用高浓度的生长素的类似物作除草剂,特别是对双子叶杂草很有效。
生长素类似物:如NAA、2,4-D。因为生长素在植物体内存在量很少,且不易保存。为了调控植物生长,通过化学合成,人们发现了生长素类似物,它们具有和生长素类似的效果而且可以进行量产,现已广泛运用到农业生产中。 地球引力对生长素分布的影响: 茎的背地生长和根的向地生长是由地球的引力引起的,原因是地球引力导致生长素分布的不均匀,在茎的近地侧分布多,背地侧分布少。由于茎的生长素最适浓度很高,茎的近地侧生长素多了一些对其有促进作用,所以近地侧生长快于背地侧,保持茎的向上生长;对根而言,由于根的生长素最适浓度很低,近地侧多了一些反而对根细胞的生长具有抑制作用,所以近地侧生长就比背地侧生长慢,保持根的向地性生长。若没有引力,根就不一定往下长了。 在失重状态对植物生长的影响: 根的向地生长和茎的背地生长是要有地球引力诱导的,是由于在地球引力的诱导下导致生长素分布不均匀造成的。在太空失重状态下,由于失去了重力作用,所以茎的生长也就失去了背地性,根也失去了向地生长的特性。但茎生长的顶端优势仍然是存在的,生长素的极性运输不受重力影响。
生长素是最早发现的植物激素。1880年
英国的达尔文(C.Darwin)在研究植物的向光性时发现,对胚芽鞘单向照光,会引起胚芽鞘的向光性弯曲。切去胚芽鞘的尖端或用不透明的锡箔小帽罩住胚芽鞘,用单侧光照射不会发生向光性弯曲。因此,达尔文认为胚芽鞘在单侧光下产生了一种向下移动的物质,引起胚芽鞘的背光面和向光面生长快慢不同,使胚芽鞘向光弯曲。 1910年,鲍森·詹森(P.Boysen-Jense)的实验证明,胚芽鞘尖端产生的影响可以透过琼脂片传递给下部。 1914年,拜尔(A.Paal)的实验证明,胚芽鞘的弯曲生长,是因为尖端产生的影响在其下部分布不均匀造成的。 1928年荷兰的温特(F.W.Went)把切下的燕麦胚芽鞘尖直与琼胶块上,经过一段时间 后,移去胚芽鞘尖把这些琼脂小块放置在去尖的胚芽鞘的一边,结果有琼胶的一边生长较快,向相反方向弯曲。这个实验证实了胚芽鞘尖产生的一种物质扩散到琼胶中,再放置于胚芽鞘上时,可向胚芽鞘下部转移,并促进下部生长。后来温特首次分离鞘尖产生的与生长有关的物质,并把这种物质命名为生长素。 1931年荷兰的Kogl等人从人尿中分离出一种化合物,加入到琼胶中,同样能诱导胚芽鞘弯曲,该化合物被证明是吲哚乙酸。随后在1946年,Kogl等人在植物组织中也找到了吲哚乙酸(indoleacetiC acid简称IAA),苯乙酸(PAA),吲哚丁酸(IBA)等。
冰乙酸是指纯净的乙酸(不含水) 为纯净物乙酸的熔点是16.6摄氏度 当纯乙酸的温度低于16.6摄氏度时,乙酸会变成冰一样的固体,所以我们称这样的乙酸为冰醋酸。
乙酸分子式:C2H4O2,化学式CH3COOH,是一种有机化合物,是典型的脂肪酸。是一个重要的化学试剂。在化学工业中,它被用来制造聚对苯二甲酸乙二酯,后者即饮料瓶的主要部分。乙酸也被用来制造电影胶片所...
工业氯乙酸HG/T 3271-2000 ,本标准规定了工业氯乙酸的要求、试验方法、检验规则及标志、包装、运输、贮存、安全等。本标准适用于冰乙酸在催化剂存在下氯化而制得的工业氯乙酸。该产品主要用...
系天然植物生长素中在植物界分布最广的,作为确定植物生长素类的作用效价的基准物质。此物质在大肠杆菌等多数的细菌或一种根霉(Rhizopus su-inus)、酵母、玉米黑粉病菌等真菌类中能合成,据称绿色的鞭毛虫类或多数的藻类也能合成。在地衣类以上的植物中相当普遍地存在,生理作用亦显著。虽也含于人尿中,但认为它是肠内细菌的产物。在植物体内色氨酸经过吲哚丙酮酸变成吲哚乙醛后氧化形成。在植物体内为过氧化物酶,或为光氧化变成生理学上没有活性的物质。对高等植物有显著促进细胞的伸长作用。与此有关地也出现细胞壁的可塑性与弹性、细胞膜的通透性、细胞的吸水力、原生质的流动速度、呼吸以及发酵量、二氧化碳的暗固定等的增加。也可促进形成层细胞和植物肿瘤组织细胞的分裂。对于花粉的发芽、促进花粉管的伸长、侧根或花芽的形成,从肿瘤组织形成芽或根都是必要的,能引起单性结实和受精后的果实发育。对促进器官伸长所必需的最适浓度因器官、组织而异,一般顶芽、茎为10-5M,侧芽为5×10-9M,根是10-10M。因此成为引起预芽优势的原因。在组织内的移动有很强的极性,在黄瓜的茎中一小时移动约20毫米,在燕麦胚芽鞘中以1.1毫米的速度向底部移动。虽然真岛利行等(1925)进行了合成,但作为植物生长素而受到重视的是F.Kogl等(1934)从人尿中提取以后的事情。苯丁酸、三碘苯甲酸等呈现拮抗的阻抑作用。
本试验运用单因素设计法,以1年生的紫薇枝条为材料,用4种不同质量浓度(50 mg/L、100 mg/L、150 mg/L、200 mg/L)的IAA(吲哚乙酸)以及清水作为对照,对紫薇插条基部进行浸泡处理,然后进行扦插.结果表明,不同浓度的吲哚乙酸对紫薇嫩枝扦插的生长影响不同,各生长指标都表现出差异化,其中被IAA 100 mg/L和150 mg/L处理后的插条成活率最高,IAA 200 mg/L处理后插条萌芽条最长,IAA 100 mg/L和200 mg/L处理后插条根最长,清水对照组的紫薇萌芽条数和根条数最多.
对五叶地锦插穗采取不同浓度(100 mol/L、300 mol/L、500 mol/L)IAA溶液、不同时间(1h、2 h)处理,以探究不同浓度的吲哚乙酸和不同处理时间对五叶地锦扦插生根的影响,在通过测定插穗生根率、生根数量、根系生长量、根系长度、愈伤组织生根率、皮部生根率指标,分析不同处理对五叶地锦扦插生根的影响。试验结果显示:在不同处理时间和不同浓度的组合处理下,五叶地锦插穗生根率显著高于对照组,在处理时间为1 h时、IAA浓度为300 mol/L的处理条件下,植株长势最好,插穗生根率最高,研究结果可作为五叶地锦经吲哚乙酸处理后生根影响的借鉴和依据。
中文别名:吲哚-3-醋酸乙酯
英文名称:ethyl indol-3-ylacetate
英文别名:1H-indole-3-acetic acid, ethyl ester; Ethyl 1H-indol-3-ylacetate; Ethyl indole-3-acetate
CAS号:778-82-5
EINECS号:212-296-0
分子式:C12H13NO2
分子量:203.2371
InChI:InChI=1/C12H13NO2/c1-2-15-12(14)7-9-8-13-11-6-4-3-5-10(9)11/h3-6,8,13H,2,7H2,1H3
密度:1.187g/cm3
熔点:42-45℃
沸点:353.4°C at 760 mmHg
闪点:167.5°C
蒸汽压:3.59E-05mmHg at 25°C
中文名称:3-吲哚丁酸
中文别名:氮茚基丁酸, 4-(吲哚基)丁酸(IUPAC),吲哚-3-丁酸
英文名称:3-Indolybutyric acid
英文别名:4-(3-1H-Indolyl)butyric acid;IBA
纯度:98%
CAS号:133-32-4
分子式:C12H13NO2
分子量:203.24
中文别名:色醇;3-(2-羟乙基)吲哚; 2-(3-吲哚基)乙醇; 3-吲哚乙醇; β-吲哚乙醇; 吲哚-3-乙醇; 色醇 3-(2-羟乙基)吲哚; Β-吲哚基乙醇(色醇)
英文别名:2-(1H-INDOL-3-YL)ETHAN-1-OL 2-(1H-INDOL-3-YL)-ETHANOL 2-(3-INDOLE)ETHANOL 3-(2-HYDROXYETHYL)INDOLE 3-(BETA-HYDROXYETHYL)INDOLE 3-INDOLEETHANOL B-3-INDOLEETHANOL B-3-INDOLYLETHANOL BETA-3-INDOLYLETHANOL INDOLE-3-ETHANOL RARECHEM AH BS 0132 TIMTEC-BB SBB003950 TRYPTOPHOL 'TRYPTOPHOL' TRYPTOTHOL 1H-Indole-3-ethanol 2-(3-Indolylethanol 3-indolyl-ethano 3-Indolylethanol beta-(3-Indole)ethanol