目录
丛书序
前言
第1章 绪论 1
1.1 引言 1
1.2 智能材料与结构 2
1.2.1 智能材料与结构的定义 2
1.2.2 智能材料与结构的发展 3
1.3 基于压电智能结构的振动控制 3
1.3.1 被动控制方法 4
1.3.2 主动控制方法 7
1.3.3 半主动控制方法 10
1.4 本书内容和章节安排 12
1.5 参考文献 13
第2章 压电智能结构的建模 16
2.1 压电方程 16
2.1.1 压电功能元件的本构方程 16
2.1.2 特定力学条件下的压电方程 18
2.2 压电材料的机电耦合系数 19
2.3 压电梁的振动 21
2.3.1 压电梁的运动方程 21
2.3.2 压电梁的模态运动方程 26
2.4 压电板的振动 29
2.4.1 压电板的运动方程 29
2.4.2 压电板的模态运动方程 33
2.5 压电智能结构的基本特性 35
2.5.1 电学边界条件对压电结构刚度与固有频率的影响 35
2.5.2 结构机电耦合系数与机械品质因子 36
2.6 压电智能结构的状态空间模型 37
2.6.1 使用压电传感器的状态方程 37
2.6.2 使用位移传感器的状态方程 38
2.7 压电智能结构的振动响应 39
2.8 结构模型参数的实验测试方法 41
2.9 参考文献 42
第3章 同步开关阻尼半主动方法的控制原理 44
3.1 SSDS 控制方法[13, 14] 44
3.2 SSDI 控制方法[7, 14] 46
3.3 SSDV 控制方法[9, 14] 48
3.4 振动控制实验验证 50
3.4.1 实验装置 50
3.4.2 三种方法的控制效果比较 50
3.5 参考文献 53
第4章 自适应SSDV 半主动控制方法 54
4.1 改进的SSDV 技术[1] 54
4.2 基于位移梯度的自适应SSDV 方法[2] 55
4.3 基于LMS 算法的自适应SSDV 方法[4] 55
4.3.1 LMS 算法原理 56
4.3.2 LMS 算法在自适应SSDV 中的应用 57
4.4 振动控制实验验证 58
4.4.1 传统SSDV 的控制效果 58
4.4.2 改进的SSDV 的控制效果 59
4.4.3 基于位移梯度的自适应SSDV 的控制效果 59
4.4.4 基于LMS 算法的自适应SSDV 的控制效果 61
4.5 参考文献 63
第5章 任意开关切换下的能量转换 65
5.1 特定条件下切换参数对控制效果的影响 66
5.1.1 切换相位对控制效果的影响 66
5.1.2 切换频率对控制效果的影响 67
5.1.3 随机切换时的控制效果 73
5.2 一般条件下切换参数对控制效果的影响[11] 76
5.2.1 压电元件上切换电压的一般形式 76
5.2.2 简谐振动下的开关切换电压一般形式 79
5.2.3 切换频率对SSD 控制中能量转换的影响 82
5.2.4 切换频率对SSDI 控制效果的影响 86
5.2.5 切换频率对SSDV 控制效果的影响 88
5.3 参考文献 89
第6章 SSD 多模态振动控制方法 91
6.1 多模态系统的总机电转换能量 91
6.2 多模态开关控制方法 95
6.2.1 基于位移阈值的多模态开关控制方法 95
6.2.2 基于能量阈值的多模态开关控制方法 95
6.2.3 控制效果验证 96
6.3 不同频率比和幅值比对机电转换总能量的影响[15] 101
6.3.1 传统极值切换下的机电转换总能量 101
6.3.2 减少极值切换下的机电转换总能量 104
6.4 不同频率比和幅值比对每个模态转换能量的影响 107
6.4.1 每个模态的机电转换能量方程 107
6.4.2 传统开关下的每个模态的机电转换能量 109
6.4.3 改进开关下的每个模态的机电转换能量 110
6.5 参考文献 113
第7章 基于负电容的同步开关阻尼半主动振动控制方法 115
7.1 SSDNC 控制电路 115
7.2 SSDNC 控制原理 117
7.2.1 压电元件上电压的瞬态响应 117
7.2.2 初次开关切换前后压电元件上的电压 118
7.2.3 压电元件上电压的稳态响应 119
7.2.4 控制系统的稳定性分析 120
7.2.5 最优控制下的能量转换 120
7.2.6 最优控制下的控制效果 121
7.2.7 控制效果的实验验证 122
7.3 切换频率对控制效果影响 123
7.3.1 切换频率对电压的影响 124
7.3.2 切换频率对能量转换的影响 126
7.3.3 切换频率对控制效果的影响 130
7.4 参考文献 133
第8章 非对称同步开关阻尼半主动振动控制方法 135
8.1 非对称半主动振动控制电路[4] 135
8.2 非对称半主动振动控制原理 136
8.2.1 控制过程中的电压变化 136
8.2.2 电压非对称比例系数 142
8.3 非对称同步开关阻尼半主动振动控制实验验证[4] 144
8.3.1 控制电压 144
8.3.2 控制效果 146
8.4 参考文献 1482100433B
《压电半主动振动控制--同步开关阻尼技术》简要地介绍了压电智能结构振动控制技术的必要性及其发展与应用现状,系统地阐述了压电同步开关阻尼(synchronized switch damping,SSD)半主动振动控制方法的基础理论与应用探索。其中,SSD半主动振动控制系统的机电耦合和能量转换模型、SSD振动控制效果的参数影响规律、提高SSD单模态与多模态半主动振动控制效果与鲁棒性的方法设计、负电容SSD半主动振动控制方法以及非对称SSD振动控制方法等内容是《压电半主动振动控制--同步开关阻尼技术》的重点。
第2版前言第1版前言第1章 土方工程1.1 土的分类与工程性质1.2 场地平整、土方量计算与土方调配1.3 基坑土方开挖准备与降排水1.4 基坑边坡与坑壁支护1.5 土方工程的机械化施工复习思考题第2...
前言第一章 绪论第一节 互换性概述第二节 加工误差和公差第三节 极限与配合标准第四节 技术测量概念第五节 本课程的性质、任务与基本要求思考题与习题第二章 光滑孔、轴尺寸的公差与配合第一节 公差与配合的...
第一篇 综合篇第一章 绿色建筑的理念与实践第二章 绿色建筑评价标识总体情况第三章 发挥“资源”优势,推进绿色建筑发展第四章 绿色建筑委员会国际合作情况第五章 上海世博会园区生态规划设计的研究与实践第六...
柜号 序号 G1 1 G1 2 G1 3 G2 4 G2 5 G2 6 G2 7 G2 8 G2 9 G1 10 G2 11 G2 12 G2 13 G2 14 G1 15 G1 16 G1 17 G2 18 G2 19 G2 20 G1 21 G3 22 G3 23 G3 24 G3 25 G3 26 G3 27 G1 28 G1 29 G3 30 G3 31 G2 32 G2 33 G2 34 G2 35 G2 36 G2 37 G2 38 下右 39 下右 40 下右 41 下右 42 下右 43 下右 44 下右 45 下右 46 下右 47 下右 48 下右 49 下右 50 下右 51 下右 52 下右 53 下左 54 下左 55 下左 56 下左 57 下左 58 下左 59 下左 60 下左 61 下左 62 下左 63 下左 64 下左 65 下左 66 下左 67 下
1 工程常用图书目录(电气、给排水、暖通、结构、建筑) 序号 图书编号 图书名称 价格(元) 备注 JTJ-工程 -24 2009JSCS-5 全国民用建筑工程设计技术措施-电气 128 JTJ-工程 -25 2009JSCS-3 全国民用建筑工程设计技术措施-给水排水 136 JTJ-工程 -26 2009JSCS-4 全国民用建筑工程设计技术措施-暖通空调 ?动力 98 JTJ-工程 -27 2009JSCS-2 全国民用建筑工程设计技术措施-结构(结构体系) 48 JTJ-工程 -28 2007JSCS-KR 全国民用建筑工程设计技术措施 节能专篇-暖通空调 ?动力 54 JTJ-工程 -29 11G101-1 混凝土结构施工图平面整体表示方法制图规则和构造详图(现浇混凝土框架、剪力墙、框架 -剪力墙、框 支剪力墙结构、现浇混凝土楼面与屋面板) 69 代替 00G101
典型的RL串联分流电路如图《三种典型的压电分流电路》所示 ,通过把电阻(R)和电感(L)串联分流电路连接在压电式作动器上,可以产生阻尼来抑制结构振动。为了得到最优化的控制效果,分流电路的固有频率必须接近或等于所要控制模态的固有频率。由于这种控制方法是阻尼控制方法(没有引入额外的控制能量),所以其稳定性可以保证。由于压电分流阻尼方法具有不需要传感器以及功率放大器等优点,被认为是一种简单、低价、易实现的结构振动和噪声控制方法,所以有众多学者对该方法进行了深入研究,并取得了丰硕的成果。
同步开关,又名选相开关,是近年来最新发展的技术,顾名思义,就是使机械开关的接点准确地在需要的时刻闭合或断开。对于控制电容器的同步开关,就是要在开关接点两端电压为零的时刻闭合,从而实现电容器的无涌流投入,在电流为零的时刻断开,从而实现开关接点的无电弧分断。同步开关技术是传统的机械开关与现代电子技术的完美结合产物,使机械开关重新焕发青春,使机械开关在具有独特技术性能的同时,其高可靠性以及低损耗的特点得以充分显示出来。
同步开关不仅可用于投切电容器(如LXK系列低压智能选相开关就是专门为无功补偿装置中电容器投切设计的),对于任何需要同步操作的负荷设备都可以使用同步开关(例如为了消除投入空载变压器时的涌流,就可以使用同步开关,不过这时的投入策略与投入电容器时完全不同,需要在电压接近峰值时投入),因此,适用于不同用途的同步开关是不能互换的。