同步发电机为了实现能量的转换,需要有一个直流磁场。而产生这个磁场的直流电流,称为发电机的励磁电流。
中文名称 | 永磁同步电机 | 根 据 | 根据励磁电流的供给方式 |
---|---|---|---|
称 为 | 称为他励发电机 | 工作方式 | 直流发电机供电 |
按照不同的工农业生产机械的要求,电机驱动又分为定速驱动、调速驱动和精密控制驱动三类。
1、 定速驱动
工农业生产中有大量的生产机械要求连续地以大致不变的速度单方向运行,例如风机、泵、压缩机、普通机床等。对这类机械以往大多采用三相或单相异步电动机来驱动。异步电动机成本较低,结构简单牢靠,维修方便,很适合该类机械的驱动。但是,异步电动机效率、功率因数低、损耗大,而该类电机使用面广量大,故有大量的电能在使用中被浪费了。其次,工农业中大量使用的风机、水泵往往亦需要调节其流量,通常是通过调节风门、阀来完成的,这其中又浪费了大量的电能。70年代起,人们用变频器调节风机、水泵中异步电动机转速来调节它们的流量,取得可观的节能效果,但变频器的成本又限制了它的使用,而且异步电动机本身的低效率依然存在。
例如,家用空调压缩机原先都是采用单相异步电动机,开关式控制其运行,噪声和较高的温度变化幅度是它的不足。90年代初,日本东芝公司首先在压缩机控制上采用了异步电动机的变频调速,变频调速的优点促进了变频空调的发展。近年来日本的日立、三洋等公司开始采用永磁无刷电动机来替代异步电动机的变频调速,显著提高了效率,获得更好的节能效果和进一步降低了噪声,在相同的额定功率和额定转速下,设单相异步电动要的体积和重量为100%,则永磁无刷直流电动机的体积为38.6%,重量为34.8%,用铜量为20.9%,用铁量为36.5%,效率提高10%以上,而且调速方便,价格和异步电动机变频调速相当。永磁无刷直流电动机在空调中的应用促进了空调剂的升级换代。
再如仪器仪表等设备上大量使用的冷却风扇,以往都采用单相异步电动机外转子结构的驱动方式,它的体积和重量大,效率低。近年来它已经完全被永磁无刷直流电动机驱动的无刷风机所取代。现代迅速发展的各种计算机等信息设备上更是无例外地使用着无刷风机。这些年,使用无刷风机已形成了完整的系列,品种规格多,外框尺寸从15mm到120mm共有12种,框架厚度有6mm到18mm共7种,电压规格有直流1.5V、3V、5V、12V、24V、48V,转速范围从 2100rpm到14000rpm,分为低转速、中转速、高转速和超高转速4种,寿命30000小时以上,电机是外转子的永磁无刷直流电动机。
近年来的实践表明,在功率不大于10kW而连续运行的场合,为减小体积、节省材料、提高效率和降低能耗等因素,越来越多的异步电动机驱动正被永磁无刷直流电动机逐步替代。而在功率较大的场合,由于一次成本和投资较大,除了永磁材料外,还要功率较大的驱动器,故还较少有应用。
2、 调速驱动
有相当多的工作机械,其运行速度需要任意设定和调节,但速度控制精度要求并不非常高。这类驱动系统在包装机械、食品机械、印刷机械、物料输送机械、纺织机械和交通车辆中有大量应用。
在这类调速应用领域最初用的最多的是直流电动机调速系统,70年代后随电力电子技术和控制技术的发展,异步电动机的变频调速迅速渗透到原来的直流调速系统的应用领域。这是因为一方面异步电动机变频调速系统的性能价格完全可与直流调速系统相媲美,另一方面异步电动机与直流电动机相比有着容量大、可靠性高、干扰小、寿命长等优点。故异步电动机变频调速在许多场合迅速取代了直流调速系统。
交流永磁同步电动机由于其体积小、重量轻、高效节能等一系列优点,越来越引起人们重视,其控制技术日趋成熟,控制器已产品化。中小功率的异步电动机变频调速正逐步为永磁同步电动机调速系统所取代。电梯驱动就是一个典型的例子。电梯的驱动系统对电机的加速、稳速、制动、定位都有一定的要求。早期人们采用直流电动机调速系统,其缺点是不言而喻的。70年代变频技术发展成熟,异步电动机的变频调速驱动迅速取代了电梯行业中的直流调速系统。而这几年电梯行业中最新驱动技术就是永磁同步电动机调速系统,其体积小、节能、控制性能好、又容易做成低速直接驱动,消除齿轮减速装置;其低噪声、平层精度和舒适性都优于以前的驱动系统,适合在无机房电梯中使用。永磁同步电动机驱动系统很快得到各大电梯公司青睐,与其配套的专用变频器系列产品已有多种牌号上市。可以预见,在调速驱动的场合,将会是永磁同步电动机的天下。日本富士公司已推出系列的永磁同步电动机产品相配的变频控制器,功率从0.4kW~300kW,体积比同容量异步电动机小1~2个机座号,力能指标明显高于异步电动机,可用于泵、运输机械、搅拌机、卷扬机、升降机、起重机等多咱场合。
3、 精密控制驱动
① 高精度的伺服控制系统
伺服电动机在工业自动化领域的运行控制中扮演了十分重要的角色,应用场合的不同对伺服电动机的控制性能要求也不尽相同。实际应用中,伺服电动机有各种不同的控制方式,例如转矩控制/电流控制、速度控制、位置控制等。伺服电动机系统也经历了直流伺服系统、交流伺服系统、步进电机驱动系统,直至近年来最为引人注目的永磁电动机交流伺服系统。最近几年进口的各类自动化设备、自动加工装置和机器人等绝大多数都采用永磁同步电动机的交流伺服系统。
② 信息技术中的永磁同步电动机
当今信息技术高度发展,各种计算机外设和办公自动化设备也随之高度发展,与其配套的关键部件微电机需求量大,精度和性能要求也越来越高。对这类微电机的要求是小型化、薄形化、高速、长寿命、高可靠、低噪声和低振动,精度要求更是特别高。例如,硬盘驱动器用主轴驱动电机是永磁无刷直流电动机,它以近10000rpm的高速带动盘片旋转,盘片上执行数据读写功能的磁头在离盘片表面只有0.1~0.3微米处作悬浮运动,其精度要求之高可想而知了。信息技术中各种设备如打印机、软硬盘驱动器、光盘驱动、传真机、复印机等中所使用的驱动电机绝大多数是永磁无刷直流电动机。受技术水平限制,这类微电机目前国内还不能自己制造,有部分产品在国内组装。
同步发电机为了实现能量的转换,需要有一个直流磁场。而产生这个磁场的直流电流,称为发电机的励磁电流。根据励磁电流的供给方式,凡是从其它电源获得励磁电流的发电机,称为他励发电机,从发电机本身获得励磁电源的,则称为自励发电机。
1、电压的调节
自动调节励磁系统可以看成为一个以电压为被调量的负反馈控制系统。无功负荷电流是造成发电机端电压下降的主要原因,当励磁电流不变时,发电机的端电压将随无功电流的增大而降低。但是为了满足用户对电能质量的要求,发电机的端电压应基本保持不变,实现这一要求的办法是随无功电流的变化调节发电机的励磁电流。
2、无功功率的调节:
发电机与系统并联运行时,可以认为是与无限大容量电源的母线运行,要改变发电机励磁电流,感应电势和定子电流也跟着变化,此时发电机的无功电流也跟着变化。当发电机与无限大容量系统并联运行时,为了改变发电机的无功功率,必须调节发电机的励磁电流。此时改变的发电机励磁电流并不是通常所说的“调压”,而是只是改变了送入系统的无功功率。
3、无功负荷的分配:
并联运行的发电机根据各自的额定容量,按比例进行无功电流的分配。大容量发电机应负担较多无功负荷,而容量较小的则负提供较少的无功负荷。为了实现无功负荷能自动分配,可以通过自动高压调节的励磁装置,改变发电机励磁电流维持其端电压不变,还可对发电机电压调节特性的倾斜度进行调整,以实现并联运行发电机无功负荷的合理分配。
你好,据我所知永磁同步电机的价格情况如下: 1、深圳市鑫希田机电有限公司,报价:110元 2、无锡犇驰电机有限公司,报价:45元 3、永康市华成电机厂,报价:185元 &nb...
60KTYZ交流电机220V马达的报价为:¥29.80 28W永磁同步交流电机慢速的报价为:¥48 以上报价来源于网络,仅供个人参考,具体报价以购买时为准。
1 引言
近年来,随着电力电子技术、微电子技术、新型电机控制理论和稀土永磁材料的快速发展,永磁同步电动机得以迅速的推广应用。永磁同步电动机具有体积小,损耗低,效率高等优点,在节约能源和环境保护日益受到重视的今天,对其研究就显得非常必要。因此。这里对永磁同步电机的控制策略进行综述,并介绍了永磁同步电动机控制系统的各种控制策略发展方向。
2 永磁同步电动机的数学模型
当永磁同步电动机的定子通入三相交流电时,三相电流在定子绕组的电阻上产生电压降。由三相交流电产生的旋转电枢磁动势及建立的电枢磁场,一方面切割定子绕组,并在定子绕组中产生感应电动势;另一方面以电磁力拖动转子以同步转速旋转。电枢电流还会产生仅与定子绕组相交链的定子绕组漏磁通,并在定子绕组中产生感应漏电动势。此外,转子永磁体产生的磁场也以同步转速切割定子绕组。从而产生空载电动势。为了便于分析,在建立数学模型时,假设以下参数:①忽略电动机的铁心饱和;②不计电机中的涡流和磁滞损耗;③定子和转子磁动势所产生的磁场沿定子内圆按正弦分布,即忽略磁场中所有的空间谐波;④各相绕组对称,即各相绕组的匝数与电阻相同,各相轴线相互位移同样的电角度。
在分析同步电动机的数学模型时,常采用两相同步旋转(d,q)坐标系和两相静止(α,β)坐标系。图1给出永磁同步电动机在(d,q)旋转坐标系下的数学模型。
(1)定子电压方程为:
式中:r为定子绕组电阻;p为微分算子,p=d/dt;id,iq为定子电流;ud,uq为定子电压;ψd,ψq分别为磁链在d,q轴上的分量;ωf为转子角速度(ω=ωfnp);np为电动机极对数。
(2)定子磁链方程为:
式中:ψf为转子磁链。
(3)电磁转矩为:
式中:J为电机的转动惯量。
若电动机为隐极电动机,则Ld=Lq,选取id,iq及电动机机械角速度ω为状态变量,由此可得永磁同步电动机的状态方程式为:
由式(7)可见,三相永磁同步电动机是一个多变量系统,而且id,iq,ω之间存在非线性耦合关系,要想实现对三相永磁同步电机的高性能控制,是一个颇具挑战性的课题。
3 永磁同步电动机的控制策略
任何电动机的电磁转矩都是由主磁场和电枢磁场相互作用产生的。直流电动机的主磁场和电枢磁场在空间互差90°,因此可以独立调节;交流电机的主磁场和电枢磁场互不垂直,互相影响。因此,长期以来,交流电动机的转矩控制性能较差。经过长期研究,目前的交流电机控制有恒压频比控制、矢量控制、直接转矩控制等方案。
3.1 恒压频比控制
恒压频比控制是一种开环控制。它根据系统的给定,利用空间矢量脉宽调制转化为期望的输出电压uout进行控制,使电动机以一定的转速运转。在一些动态性能要求不高的场所,由于开环变压变频控制方式简单,至今仍普遍用于一般的调速系统中,但因其依据电动机的稳态模型,无法获得理想的动态控制性能,因此必须依据电动机的动态数学模型。永磁同步电动机的动态数学模型为非线性、多变量,它含有ω与id或iq的乘积项,因此要得到精确的动态控制性能,必须对ω和id,iq解耦。近年来,研究各种非线性控制器用于解决永磁同步电动机的非线性特性。
3.2 矢量控制
高性能的交流调速系统需要现代控制理论的支持,对于交流电动机,目前使用最广泛的当属矢量控制方案。自1971年德国西门子公司F.Blaschke提出矢量控制原理,该控制方案就倍受青睐。因此,对其进行深入研究。
矢量控制的基本思想是:在普通的三相交流电动机上模拟直流电机转矩的控制规律,磁场定向坐标通过矢量变换,将三相交流电动机的定子电流分解成励磁电流分量和转矩电流分量,并使这两个分量相互垂直,彼此独立,然后分别调节,以获得像直流电动机一样良好的动态特性。因此矢量控制的关键在于对定子电流幅值和空间位置(频率和相位)的控制。矢量控制的目的是改善转矩控制性能,最终的实施是对id,iq的控制。由于定子侧的物理量都是交流量,其空间矢量在空间以同步转速旋转,因此调节、控制和计算都不方便。需借助复杂的坐标变换进行矢量控制,而且对电动机参数的依赖性很大,难以保证完全解耦,使控制效果大打折扣。
3.3 直接转矩控制
矢量控制方案是一种有效的交流伺服电动机控制方案。但因其需要复杂的矢量旋转变换,而且电动机的机械常数低于电磁常数,所以不能迅速地响应矢量控制中的转矩。针对矢量控制的这一缺点,德国学者Depenbrock于上世纪80年代提出了一种具有快速转矩响应特性的控制方案,即直接转矩控制(DTC)。该控制方案摒弃了矢量控制中解耦的控制思想及电流反馈环节,采取定子磁链定向的方法,利用离散的两点式控制直接对电动机的定子磁链和转矩进行调节,具有结构简单,转矩响应快等优点。DTC最早用于感应电动机,1997年L Zhong等人对DTC算法进行改造,将其用于永磁同步电动机控制,目前已有相关的仿真和实验研究。
DTC方法实现磁链和转矩的双闭环控制。在得到电动机的磁链和转矩值后,即可对永磁同步电动机进行DTC。图2给出永磁同步电机的DTC方案结构框图。它由永磁同步电动机、逆变器、转矩估算、磁链估算及电压矢量切换开关表等环节组成,其中ud,uq,id,iq为静止(d,q)坐标系下电压、电流分量。
虽然,对DTC的研究已取得了很大的进展,但在理论和实践上还不够成熟,例如:低速性能、带负载能力等,而且它对实时性要求高,计算量大。
3.4 解耦控制
永磁同步电动机数学模型经坐标变换后,id,id之间仍存在耦合,不能实现对id和iq的独立调节。若想使永磁同步电动机获得良好的动、静态性能,就必须解决id,iq的解耦问题。若能控制id恒为0,则可简化永磁同步电动机的状态方程式为:
此时,id与iq无耦合关系,Te=npψfiq,独立调节iq可实现转矩的线性化。实现id恒为0的解耦控制,可采用电压型解耦和电流型解耦。前者是一种完全解耦控制方案,可用于对id,iq的完全解耦,但实现较为复杂;后者是一种近似解耦控制方案,控制原理是:适当选取id环电流调节器的参数,使其具有相当的增益,并始终使控制器的参考输入指令id*=O,可得到id≈id*=0,iq≈iq*o,这样就获得了永磁同步电动机的近似解耦。图3给出基于矢量控制和id*=O解耦控制的永磁同步电动机
调速系统框图。
虽然电流型解耦控制方案不能完全解耦,但仍是一种行之有效的控制方法,只要采取较好的处理方式,也能得到高精度的转矩控制。因此,工程上使用电流型解耦控制方案的较多。然而,电流型解耦控制只能实现电动机电流和转速的静态解耦,若实现动态耦合会影响电动机的控制精度。另外,电流型解耦控制通过使耦合项中的一项保持不变,会引入一个滞后的功率因数。
4 结语
上述永磁同步电动机的各种控制策略各有优缺点,实际应用中应当根据性能要求采用与之相适应的控制策略,以获得最佳性能。永磁同步电动机以其卓越的性能,在控制策略方面已取得了许多成果,相信永磁同步电动机必然广泛地应用于国民经济的各个领域。
自动调节励磁的组成部件有机端电压互感器、机端电流互感器、励磁变压器;励磁装置需要提供以下电流,厂用AC380v、厂用DC220v控制电源.厂用DC220v合闸电源;需要提供以下空接点,自动开机.自动停机.并网(一常开,一常闭)增,减;需要提供以下模拟信号,发电机机端电压100V,发电机机端电流5A,母线电压100V,励磁装置输出以下继电器接点信号;励磁变过流,失磁,励磁装置异常等。
励磁控制、保护及信号回路由灭磁开关,助磁电路、风机、灭磁开关偷跳、励磁变过流、调节器故障、发电机工况异常、电量变送器等组成。在同步发电机发生内部故障时除了必须解列外,还必须灭磁,把转子磁场尽快地减弱到最小程度,保证转子不过的情况下,使灭磁时间尽可能缩短,是灭磁装置的主要功能。根据额定励磁电压的大小可分为线性电阻灭磁和非线性电阻灭磁。
近十多年来,由于新技术,新工艺和新器件的涌现和使用,使得发电机的励磁方式得到了不断的发展和完善。在自动调节励磁装置方面,也不断研制和推广使用了许多新型的调节装置。由于采用微机计算机用软件实现的自动调节励磁装置有显著优点,目前很多国家都在研制和试验用微型机计算机配以相应的外部设备构成的数字自动调节励磁装置,这种调节装置将能实现自适应最佳调节。
获得励磁电流的方法称为励磁方式。目前采用的励磁方式分为两大类:一类是用直流发电机作为励磁电源的直流励磁机励磁系统;另一类是用硅整流装置将交流转化成直流后供给励磁的整流器励磁系统。现说明如下:
1 直流励磁机励磁 直流励磁机通常与同步发电机同轴,采用并励或者他励接法。采用他励接法时,励磁机的励磁电流由另一台被称为副励磁机的同轴的直流发电机供给。如图15.5所示。
2 静止整流器励磁 同一轴上有三台交流发电机,即主发电机、交流主励磁机和交流副励磁机。副励磁机的励磁电流开始时由外部直流电源提供,待电压建立起来后再转为自励(有时采用发电机)。副励磁机的输出电流经过静止晶闸管整流器整流后供给主励磁机,而主励磁机的交流输出电流经过静止的三相桥式硅整流器整流后供给主发电机的励磁绕组。(见图15.6)
3 旋转整流器励磁 静止整流器的直流输出必须经过电刷和集电环才能输送到旋转的励磁绕组,对于大容量的同步发电机,其励磁电流达到数千安培,使得集电环严重过热。因此,在大容量的同步发电机中,常采用不需要电刷和集电环的旋转整流器励磁系统,如图15.7所示。主励磁机是旋转电枢式三相同步发电机,旋转电枢的交流电流经与主轴一起旋转的硅整流器整流后,直接送到主发电机的转子励磁绕组。交流主励磁机的励磁电流由同轴的交流副励磁机经静止的晶闸管整流器整流后供给。由于这种励磁系统取消了集电环和电刷装置,故又称为无刷励磁系统。
优点:同步,可当发电机用
缺点:电刷容易坏,电机结构复杂,造价高
绝缘电阻测试仪 光纤光缆 拉力试验机 油桶泵 高低温试验箱 计量泵 合金分析仪 温度变送器红外测温仪 四川短信群发 复合盐雾腐蚀试验箱 噪音计 搅拌机 金属元素分析仪 鲍尔环 不锈钢仪表阀门 电磁流量计 电动执行器 旋进旋涡流量计 压力变送器
永磁同步电机工作方式
一、发电机获得励磁电流的几种方式
1、直流发电机供电的励磁方式:这种励磁方式的发电机具有专用的直流发电机,这种专用的直流发电机称为直流励磁机,励磁机一般与发电机同轴,发电机的励磁绕组通过装在大轴上的滑环及固定电刷从励磁机获得直流电流。这种励磁方式具有励磁电流独立,工作比较可靠和减少自用电消耗量等优点,是过去几十年间发电机主要励磁方式,具有较成熟的运行经验。缺点是励磁调节速度较慢,维护工作量大,故在10MW以上的机组中很少采用。
2、交流励磁机供电的励磁方式,现代大容量发电机有的采用交流励磁机提供励磁电流。交流励磁机也装在发电机大轴上,它输出的交流电流经整流后供给发电机转子励磁,此时,发电机的励磁方式属他励磁方式,又由于采用静止的整流装置,故又称为他励静止励磁,交流副励磁机提供励磁电流。交流副励磁机可以是永磁测量装置机或是具有自励恒压装置的交流发电机。为了提高励磁调节速度,交流励磁机通常采用100——200HZ的中频发电机,而交流副励磁机则采用400——500HZ的中频发电机。这种发电机的直流励磁绕组和三相交流绕组都绕在定子槽内,转子只有齿与槽而没有绕组,像个齿轮,因此,它没有电刷,滑环等转动接触部件,具有工作可靠,结构简单,制造工艺方便等优点。缺点是噪音较大,交流电势的谐波分量也较大。
3、无励磁机的励磁方式:
在励磁方式中不设置专门的励磁机,而从发电机本身取得励磁电源,经整流后再供给发电机本身励磁,称自励式静止励磁。自励式静止励磁可分为自并励和自复励两种方式。自并励方式它通过接在发电机出口的整流变压器取得励磁电流,经整流后供给发电机励磁,这种
励磁方式具有结简单,设备少,投资省和维护工作量少等优点。自复励磁方式除设有整流变压外,还设有串联在发电机定子回路的大功率电流互感器。这种互感器的作用是在发生短路时,给发电机提供较大的励磁电流,以弥补整流变压器输出的不足。这种励磁方式具有两种励磁电源,通过整流变压器获得的电压电源和通过串联变压器获得的电流源。
在改变发电机的励磁电流中,一般不直接在其转子回路中进行,因为该回路中电流很大,不便于进行直接调节,通常采用的方法是改变励磁机的励磁电流,以达到调节发电机转子电流的目的。常用的方法有改变励磁机励磁回路的电阻,改变励磁机的附加励磁电流,改变
可控硅的导通角等。这里主要讲改变可控硅导通角的方法,它是根据发电机电压、电流或功率因数的变化,相应地改变可控硅整流器的导通角,于是发电机的励磁电流便跟着改变。这套装置一般由晶体管,可控硅电子元件构成,具有灵敏、快速、无失灵区、输出功率大、体积小和重量轻等优点。在事故情况下能有效地抑制发电机的过电压和实现快速灭磁。自动调节励磁装置通常由测量单元、同步单元、放大单元、调差单元、稳定单元、限制单元及一些辅助单元构成。被测量信号(如电压、电流等),经测量单元变换后与给定值相比较,然后将比较结果(偏差)经前置放大单元和功率放大单元放大,并用于控制可控硅的导通角,以达到调节发电机励磁电流的目的。同步单元的作用是使移相部分输出的触发脉冲与可控硅整流器的交流励磁电源同步,以保证控硅的正确触发。调差单元的作用是为了使并联运行的发电机能稳定和合理地分配无功负荷。稳定单元是为了改善电力系统的稳定而引进的单元 。励磁系统稳定单元 用于改善励磁系统的稳定性。限制单元是为了使发电机不致在过励磁或欠励磁的条件下运行而设置的。必须指出并不是每一种自动调节励磁装置都具有上述各种单元,一种调节器装置所具有的单元与其担负的具体任务有关。
永磁同步电机.ppt
精心整理 永磁同步电机设计 1电机仿真模型 (a)原型电机( b)新型电机 图 1PM-Y2-180-4 电机整体有限元仿真模型 图 2新型电机转子 1/4模型 2静态有限元仿真结果比较 2.1 永磁磁场分布 当永磁体单独作用时,两种电机的磁力线分布如图 3 所示。 (a)原型电机( b)新型电机 图 3两种电机永磁磁场分布 2.2 永磁气隙磁密波形 当永磁体单独作用时,两种电机一个周期范围(即一对永磁体范围)的永磁气隙磁密波形如图 4 所示。 (a)原型电机 (b)新型电机 ( c)两种电机比较 图 4两种电机永磁气隙磁密分布 3空载稳态有限元仿真结果比较 3.1 空载永磁磁链、空载永磁反电势波形 空载情况下, 两种电机的三相绕组电流均设置为零, 电机中磁场由永磁体单独产生。 设置电机稳态运行转速 为 n=3000r/min ,可得到两种电机的空载永磁磁链、空载永磁反电势波形分别如图 5
为解决2013年12月前永磁同步电机扭矩控制系统因难以对电机电感准确地标定和辨识而造成对电机输出扭矩的控制会产生较大偏差的技术问题,该发明提出一种永磁同步电机扭矩输出控制系统。
《一种永磁同步电机扭矩输出控制系统》包括依次电连接的调制模块、逆变器和永磁同步电机,其特征在于还包括:
3/2变换模块:用于对电机的三相输出电流进行3/2变换,输出磁通电流反馈值和扭矩电流反馈值;扭矩计算模块:用于根据磁通电流反馈值和扭矩电流反馈值计算出电机扭矩实际输出值;需求电流计算模块:用于根据输入的电机扭矩输出需求值计算出该需求值对应的磁通电流需求值和扭矩电流需求值;扭矩比较器:用于计算电机扭矩输出需求值与电机扭矩输出实际值的差值;扭矩电流补偿积分调节模块:用于对电机扭矩输出需求值与电机扭矩输出实际值的差值进行积分调节,计算出扭矩电流补偿值;扭矩电流加法器:用于计算扭矩电流需求值与扭矩电流补偿值的和值,即为扭矩电流参考值;磁通电流计算模块:用于根据磁通电流需求值、扭矩电流需求值和扭矩电流参考值计算出磁通电流参考值;扭矩电流比较器:用于计算扭矩电流参考值与扭矩电流反馈值的差值;磁通电流比较器:用于计算磁通电流参考值与磁通电流反馈值的差值;和电流PI调节模块:用于根据扭矩电流参考值与扭矩电流反馈值的差值以及磁通电流参考值与磁通电流反馈值的差值分别计算出电机同步旋转坐标下d轴电压和q轴电压,并将两电压值送入调制模块。
进一步的,需求电流计算模块包括:电极电感计算单元:用于根据电机直轴和交轴电感的饱和特性计算不同电机电流下对应的电机电感;和电流需求值计算单元:以最大扭矩电流比为控制目标,计算电机扭矩输出需求值对应的磁通电流需求值和扭矩电流需求值。
进一步的,磁通电流计算模块用于按如下公式计算:is_ref1=sqrt(id_ref1^2 iq_ref1^2),id_ref2=sqrt(is_ref1^2-iq_ref2^2);其中,is_ref1为磁通电流需求值和扭矩电流需求值确定的定子电流需求值,id_ref1为磁通电流需求值,iq_ref1为扭矩电流需求值,id_ref2为磁通电流参考值,iq_ref2为扭矩电流参考值。
进一步的,扭矩计算模块用于按如下公式计算:T_fdb=1.5*np*iq_fdb*(φ-(Ld-Lq)*id_fdb)其中,T_fdb为电机扭矩实际输出值;id_fdb为磁通电流反馈值;iq_fdb为扭矩电流反馈值;Ld为id_fdb下的直轴电感;Lq为iq_fdb下的交轴电感;np为电机极对数;φ为电机永磁链。
进一步的,扭矩补偿积分调节模块包括相连接的积分电路和限幅电路。
进一步的,调制模块为SVPWM(SpaceVectorPulseWidthModulation,空间矢量脉宽调制)调制模块。
《一种永磁同步电机扭矩输出控制系统》在控制扭矩输出的基础上,以实际输出扭矩为目标,计算出扭矩偏差,用扭矩偏差去修正磁通电流和扭矩电流的匹配关系,使得电机扭矩输出跟踪目标扭矩。《一种永磁同步电机扭矩输出控制系统》在得到电机电感参数进行最大扭矩电流比控制中,使用计算的反馈扭矩和目标需求扭矩的偏差进行积分调节,进行扭矩电流的补偿,从而动态跟踪目标需求扭矩,既避免了工程离线标定扭矩的复杂过程,又解决了电感参数标定不准带来的扭矩精度问题,并且工程上实现方便实用。
本书的基本研究内容已经历多年的变化,特别是近几上的相关研究工作和相关技术飞速发展,永磁同步电机矢量控制和直接转矩控制的应用领域也越来越广泛,因而在写作过程中只能不断进行基本内容的调整。2100433B
永磁同步电机牵引系统是列车的动力系统,由变流器和电机两大部分组成,其中变流器相当于列车的心脏,电机好比是列车的肌肉,电机主要负责传达动力,完成电能到机械能转变,带动列车平稳行驶。