中文名 | 赝电容 | 外文名 | pseudocapacitance |
---|---|---|---|
单 位 | 法拉(Farad,符号F) | 学 科 | 电化学 |
目前赝电容电极材料主要为一些金属氧化物和导电聚合物。目前对金属氧化物电极电化学电容器所用电极材料的研究,主要是一些过渡金属氧化物, 如a-MnO2'nH20、a-V205·nH20、a-RuO2·nH20、IrO2、Ni0 、H3PM ol2040'nH20、W 03、Pb02、Co304、SrRuO3等,另外还有发展金属的氮化物y-M~N作电极材料。金属氧化物基电容器目前研究最为成功的电极材料主要是氧化钌, 由于贵金属的资源有限,价格过高将限制对它的使用,对于金属氧化物电容器的研究主要在于降低材料的成本,寻找较廉价的材料。
截至2017年,赝电容电极材料主要为一些金属氧化物和导电聚合物。其对金属氧化物电极电化学电容器所用电极材料的研究,主要是一些过渡金属氧化物, 如α-MnO2·nH2O、α-V2O5·nH2O、α-RuO2·nH2O、IrO2、NiO、H3PMo12O40·nH2O、WO3、PbO2、Co3O4、SrRuO3等,另外还有发展金属的氮化物y-M~N作电极材料。截至2017年,金属氧化物基电容器中,研究最为成功的电极材料主要是氧化钌。但贵金属的资源有限、价格过高等因素将限制对它的使用。对于金属氧化物电容器的研究主要在于降低材料的成本,寻找较廉价的材料。2100433B
赝电容是介于传统电容器和电池之间的一种中间状态,虽然电极活性物质因电子传递发生了法拉第反应,但其充放电行为更接近于电容器而非普通电池,因为其充放电行为存在以下特征:
(1) 电容器的电压随储存或释放的电荷量近似线性地变化。
(2) 当电容器的电压随时间线性变化时,所观察到的电流或电容接近于一个常数。
除此之外,赝电容最重要的一个特点是被吸附的离子不会与电极上的原子发生化学反应,而是发生电荷传递。溶液中的离子通过物理吸附的方式靠在电极表面,不产生也不断裂化学键。这个过程是可逆且非常迅速的,电极材料不发生任何相变。
在法拉第电容器中,同时存在着法拉第赝电容和双电层电容两种存储机制。其中法拉第准电容占据绝对主导地位,其功率密度大小由活性物质表面或体相中电解液离子的传输速率和电荷转移速率控制。在电极面积相同的情况下,法拉第准电容的比容量可以是双电层电容比容量的10~100倍。
法拉第赝电容材料的比容量除了与电极材料的微观结构(比表面积、孔隙率和孔径分布等)有关外,还与电极活性物质的种类(元素组成)、晶体结构等因素息息相关。由于法拉第赝电容的充放电速度在一定程度上受到电解液离子在活性物质表面或体相中二维准二维空间上迁移速度的限制,因此法拉第赝电容器的倍率性能与电极材料的晶体结构具有非常密切的关系。
在通常使用的家用电器中,电容器主要有三个作用:1 在需要直流电源的电路中,对交流电源整流后用电容器滤波,得到平滑的直流电。如不用这个电容器,交流电源经整流后的脉动直流电流不能经滤波成为平滑的...
用在单相电机的电容一般有两种:一种是我们较常见的启动电容,顾名思义,由于单相电机形成的磁场不是旋转的,在启动时就有了电机转向的不确定性或难以启动。通过电容的移相作用,使电机形成旋转的磁场,从而电机顺利...
行电容的容量可按下式计算:C=1950*In/(Un*COSФ) (μF)式中In、Un、cos十分别是原三相电机铭牌上的额定电流、额定电压和功率因数值,若铭牌上无功率因数,cosy可取0...
赝电容从电化学的角度可以分为三个类型:(1)欠电位沉积;(2)氧化还原赝电容;(3)插层式赝电容。欠电位沉积是溶液中金属离子在其氧化还原电位下,吸附在另一种金属表面形成单层金属层的过程。这一过程是发生在两种不同金属之间的,典型的例子就是利用欠电位沉积法在金电极表面沉积一层铅。氧化还原赝电容是指溶液中的离子电化学吸附到活性物质表面或者近表面,然后与传输来的电子发生氧化还原反应,将电子/离子转化为电荷储存起来的过程。插层式赝电容是针对隧道状或者层状材料的一种新型的赝电容形式。溶液中的离子插层到材料的孔或者层间,进而与周围的原子、传输过来的电子发生氧化还原反应。这种赝电容形式不同于锂电池的插层,不会发生材料的相变。三种类型的赝电容虽然具体的物理化学过程不尽相同,但是其氧化还原反应过程中电荷转移数量和反应电位的关系却遵循着同一公式:
一、电容的主要参数: 1、 电压 1) 额定电压:两端可以持续施加的电压,一般为直流电压,通常用 VDC。而专用于 交流电的则为交流有效值电压,通常为 VAC。 电容器的交直流额定电压换算关系 直流额定电压 VR/VDC 50 63 100 250 400 630 1000 交流额定电压 VR/VAC 30 40 63 160 200 220 250 2) 浪涌电压:电解电容特有的电压参数,是短时间可以承受的过电压,为额定电压的 1.15 倍。 3) 瞬时过电压:是铝电解电容特有电压参数,为可以瞬时承受的过电压,这个浪涌电 压约为额定电压的 1.3 倍,是铝电解电容的击穿电压。 4) 介电强度:电容额定电压低于电容中介质的击穿电压。一般为额定电压的 1.5~2.5 倍。如:铝电解电容的击穿电压约为额定电压的 1.3 倍;其它介质则通常为 1.75~2 倍以上。 5) 试验电压:薄膜电容
在把电容装入你的应用装置之前请仔细阅读下面的安装与维护说明。 关于本手册 : 这篇手册介绍了典型的用法。在安装前,请参考我们的产品使用说明书,或者要求我 们对你的特殊要求作出认可。 为了你的安全!不遵守手册指南可能会导致操作失败,爆炸和起火。 如果你有疑问,请与当地的 EPCOS销售单位或发行人联系,取得帮助。 安装与操作时的总体注意事项: ——保证电容外壳有良好的有效的接地。 ——在系统中,与任何故障元件 /区域要有绝缘措施。 ——搬运电容时要小心,由于放电元件故障,即使断开后,电容也有可能会有电。 ——遵守有关的工程实践要求。 ——不要使用 HRC 熔丝来来断电容(否则会有可能引起电弧导致危险) 。 ——一旦施加了电压,同样要考虑电容接线端子、连接母线和电缆,还有任何其他的 与其相连的元件。因为它们是带电的! 存放和操作条件 不要在腐蚀性的空气中,特别是氯化物气体、硫化物气体、酸性、碱
法拉第赝电容,继双层电容器后,又发展了赝电容器。赝电容,也称法拉第准电容,是在电极表面或体相中的二维或准二维空间上,电活性物质进行欠电位沉积,发生高度可逆的化学吸附,脱附或氧化,还原反应,产生和电极充电电位有关的电容。
赝电容不仅在电极表面,而且可在整个电极内部产生,因而可获得比双电层电容更高的电容量和能量密度。在相同电极面积的情况下,赝电容可以是双电层电容量的10~100倍。
赝电容电极材料主要为一些金属氧化物和导电聚合物。对金属氧化物电极电化学电容器所用电极材料的研究,主要是一些过渡金属氧化物, 如a—MnO2‘nH20、a—V205·nH20、a—RuO2·nH20、IrO2、Ni0 、H3PM ol2040‘nH20、W 03、Pb02、Co304、SrRuO3等,另外还有发展金属的氮化物y-M~N作电极材料。金属氧化物基电容器研究最为成功的电极材料主要是氧化钌, 由于贵金属的资源有限,价格过高将限制对它的使用,对于金属氧化物电容器的研究主要在于降低材料的成本,寻找较廉价的材料。2100433B
继双层电容器后,又发展了赝电容器。赝电容,也称法拉第准电容,是在电极表面或体相中的二维或准二维空间上,电活性物质进行欠电位沉积,发生高度可逆的化学吸附,脱附或氧化,还原反应,产生和电极充电电位有关的电容。赝电容不仅在电极表面,而且可在整个电极内部产生,因而可获得比双电层电容更高的电容量和能量密度。在相同电极面积的情况下,赝电容可以是双电层电容量的10~100倍。
目前赝电容电极材料主要为一些金属氧化物和导电聚合物。目前对金属氧化物电极电化学电容器所用电极材料的研究,主要是一些过渡金属氧化物, 如a-MnO2'nH20、a-V205·nH20、a-RuO2·nH20、IrO2、Ni0 、H3PM ol2040'nH20、W 03、Pb02、Co304、SrRuO3等,另外还有发展金属的氮化物y-M~N作电极材料。金属氧化物基电容器目前研究最为成功的电极材料主要是氧化钌, 由于贵金属的资源有限,价格过高将限制对它的使用,对于金属氧化物电容器的研究主要在于降低材料的成本,寻找较廉价的材料。
氧化锰做赝电容器电极时具有理论容量高、环保、成本低等优势,但是存在循环寿命和高负载时实际比容量不高的问题,必须对储能机制进行深入的研究,才有可能发现解决问题的关键,最终实现高性能材料的优化设计。本项目基本按照计划进行,主要研究了不同晶相MnO2和Mn3O4的储能机制,取得的重要结果如下: 1. 使用原位Ranman的手段检测到MnOOH的信号,证实α(alpha)相MnO2在中性硫酸钠中充放电时,既有电解液钠离子嵌入脱出参与储能,也有质子参与储能。而质子参与储能时产生的中间相MnOOH很容易发生歧化反应产生可溶于水的Mn2 ,这跟传统理论中提出的MnO2在储能过程逐渐减少造成其循环寿命不高的观点是一致的。 2. 对于纯的Mn3O4相,使用原位拉曼结合其他表征手段发现其在充放电测试的首圈即开始转变为δ相MnO2,并且此过程不可逆。另外,转变后的δ-MnO2在充放电过程并无质子参与储能的信号,仅有电解液钠离子的嵌入脱出引起的层间距的膨胀/收缩,因而该相具有很好的循环稳定性。 3.根据前期的研究结果设计了具有高容量的多孔δ-MnO2电极,使其容量接近理论值,在此极端条件下研究了其储能过程,同样未发现质子相关的Raman信号。结合DFT理论计算,得出此相中质子与电解液钠离子相比,不倾向于参与储能的结论。 通过本项目的顺利实施,我们对MnO2的储能机制进行了详细的探讨,发现质子参与储能具有相结构的选择性,通过相选择可以解决因中间相MnOOH的生成造成的循环寿命不高的问题,由此可得到具有高循环寿命的电极,解决了长期以来困扰该领域的一个瓶颈问题。另外,通过本项目的实施有望在后期的研究中解决MnO2实际比容量不高的问题。本项目所涉及的研究目前在国内甚至是世界范围内都很少有涉及到的,这些重要结论的得出,必将指导锰基高性能超级电容电极材料的设计与研发,推动其产业化的步伐。 2100433B