1.2.1领域内关键词语的基本概念
★ 谐波:(harmonic) 对周期性交流信号量进行傅立叶级数分解,得到频率为基波频率大于1的整数倍的分量。我国供电系统频率为50Hz,所以5次谐波的频率为250 Hz。7次谐波的频率为350 Hz。11次谐波的频率为550 Hz,13次谐波的频率为650 Hz。
★ 公共连接点:(PCC)用户接入电网的连接处。
★ 总谐波畸变率:(THD)周期性交流量的谐波含量的方均根值与基波分量的方均根值之比(用百分数表示)。电压总谐波畸变率以THDU表示,电流总谐波畸变率以THDI表示。
★ 谐波源(harmonic source):向公用电网注入谐波电流或在公用电网中产生谐波电压的电气设备。
★ 感性无功:电动机,变压器在能量转换过程中建立交变磁场,在一个周期内吸收的功率和释放的功率相等,这种功率叫感性无功功率。
★ 容性无功电容器在交流电网中接通时在一个周期内,上半周期的充电功率和下半周期的放电功率相等,不消耗能量,这种充放电功率叫容性无功功率。
★ 功率因数:有功功率与视在功率的比值称为功率数。
★ 功率因数调整电费:实行两部分电价制度的用电企业,供电部门根据用户平均功率因数而加收或减免的电费,称为功率因数调整电费
谐波主要是由于大容量整流或换流设备以及其它非线性负荷,导致电流波形畸变造成的。对这些畸形的变交流量进行傅立叶级数分解,即可得到50Hz的基波分量和频率为基波分量整数倍的谐波分量。
影响供电系统的稳定运行:供配电系统中的电力线路与电力变压器,一般采用电磁继电器,感应式继电器或新式微机保护进行检测保护,在系统中这些属于敏感元件,继电器受到高次谐波的影响容易产生误动作,微机保护由于采用了整流采样电路,也及易受到谐波的影响导致误动或拒动,这样谐波严重威胁供电系统的稳定与安全运行。
影响电网的质量:高次谐波能使电网的电压与电流波形发生畸变,另外相同频率的谐波电压与谐波电流要产生同次谐波的有功功率和无功功率,从而降低电网电压,增加电路损耗,浪费电网容量。
影响供电系统的无功补偿设备:供电系统变电站均有无功补偿设备,当谐波注入电网时容易造成高压电容过电流和过负荷,使电容异常发热;另外谐波的存在还会加快电容器绝缘介质的老化,缩短电容的使用寿命。
影响电力变压器的使用:谐波的存在会使电力变压器的铜损和铁损增加,直接影响变压器的使用效率;还会造成变压器噪声增加,缩短变压器的使用寿命。
影响用电设备:谐波的存在会造成异步电机电动机效率下降,噪声增大;使低压开关设备产生误动作;对工业企业自动化的正常通讯造成干扰,影响电力电子计量设备的准确性。
1.2.3治理谐波及补偿无功功率的重要性
采用专门的滤波装置能够有效的滤除高次谐波,同时向电网提供容性无功功率,其重要性主要表现在以下方面:
滤除高次谐波能够定化用电环境,降低视在功率,减少谐波电流在用电设备和输配电设备中的发热,直接节省有功功率;消除由于谐波产生的震动,延长电器的使用寿命;有效的消除对敏感元件的影响。
由于滤波回路是由电抗器和电容器串联形成的,所以在滤波的过程中能向电网注入容性无功,提高了功率因数,这样就能避免供电部门高额的功率因数调整电费,由于无功电流的抵消,也相当于提高了配电设备的容量,减少了线损。无功功率补偿还能提升末端的电网电压,对优化用电环境有很重要的意义。
在设计滤波器时,首先应满足各种负载水平下对谐波限制的技术要求,然后在次前提下,使滤波器在经济上最为合理。除以上经济分析外,设计滤波器还应注意以下两点:
1)单调滤波器的谐振频率会因电容,电感参数的偏差或变化而改变,电网频率会有一定的波动,这将导致滤波器失谐。设计时应保证在正常是谐的情况下滤波装置仍能满足各项要求。
2)电网阻抗变化对滤波装置尤其是其中的单调谐滤波器的滤波效果有较大影响。而更为严重的是,电网阻抗与滤波装置有发生并联谐振的可能,设计时应充分予以考虑。
消谐装置可以区分过电压、铁磁谐振以及单相接地,能够对5种频率(3分频/17Hz、2分频/25Hz、工频/50Hz、3倍频/150Hz、5倍频/250Hz)的铁磁谐振进行消谐,从而解决了铁磁谐振带来的危害。
不一样。两者结构和功能不一样。谐波保护器是为用电设备提供多功能谐波保护。对用电设备产生的随机高次谐波和高频噪声、脉冲尖峰、电涌等干扰具有抑制和吸收作用;随时跟踪电压波形,瞬时滤除电源中的尖峰、浪涌(雷...
完全不一样!
当然有区别的啦别听一楼大哥在这里忽悠你啦!!!!!无功补偿很简单的,就是给主电路并联电容,来提高功率因数,提升电压质量。消歇装置是用来平和因为无功补偿时候的电容产生的高次谐波的。消歇装置的前提是得有高...
1.2.1领域内关键词语的基本概念
谐波:(harmonic) 对周期性交流信号量进行傅立叶级数分解,得到频率为基波频率大于1的整数倍的分量。我国供电系统1次谐波的频率为50Hz,所以5次谐波的频率为250 Hz。7次谐波的频率为350 Hz。11次谐波的频率为550 Hz,13次谐波的频率为650 Hz。
公共连接点:(PCC)用户接入电网的连接处。
总谐波畸变率:(THD)周期性交流量的谐波含量的方均根值与基波分量的方均根值之比(用百分数表示)。电压总谐波畸变率以THDU表示,电流总谐波畸变率以THDI表示。
谐波源(harmonic source):向公用电网注入谐波电流或在公用电网中产生谐波电压的电气设备。
感性无功:电动机,变压器在能量转换过程中建立交变磁场,在一个周期内吸收的功率和释放的功率相等,这种功率叫感性无功功率。
容性无功电容器在交流电网中接通时在一个周期内,上半周期的充电功率和下半周期的放电功率相等,不消耗能量,这种充放电功率叫容性无功功率。
功率因数:有功功率与视在功率的比值称为功率数。
功率因数调整电费:实行两部分电价制度的用电企业,供电部门根据用户平均功率因数而加收或减免的电费,称为功率因数调整电费
消谐装置是专用于低压电网3次、5次、7次、11次、13次及以上的谐波无源滤波装置。适用于中频冶炼、变频、轧钢、整流设备等的环境。该装置采用了电感和电容器组成串联谐振吸收回路,有效的将负载产生的谐波加以吸收,从而避免将谐波电流返送到电力变压器,大大降低电网的谐波量,同时有利于用户电力变压器的运行,降低功耗,提高设备和其它电器组件的可靠性。此外该设备还提供一定容量的无功功率补偿,提高用户负载的运行效率。该装置分综合控制柜和电抗柜,视用户要求不同,配置的滤除谐波次数也不同。通常一套BCBDL系统可滤除4种谐波。系统的操作可分自动运行和手动操作。
(1)CPU采用超低功耗的32位ARM芯片,更适合工业级环境,板卡的模块化设计使维护变得更加简单。数据采集、运算、逻辑判断、控制输出等速度快,精度高。装置具备“看门狗” (Watchdog)电路,自检及自恢复能力强;
(2)采用宽温图形液晶显示器(LCD),中文界面提示,显示信息丰富、直观;
(3)智能化软件技术、原理先进,性能稳定,安全可靠;
(4)实时显示系统时钟、日历、PT开口三角电压有效值;
(5)能够对5种频率(3分频/17Hz、2分频/25Hz、工频/50Hz、3倍频/150Hz、5倍频/250Hz)的铁磁谐振进行消谐;
(6)可以判别过电压、铁磁谐振以及单相接地;
(7)对各种故障均可给出告警信号并显示、保存有关信息;
(8)装置具有故障录波功能,可以提供故障前后的波形,包括故障发生前的一个周期和故障发生后五个周期的波形。可保存现场故障录波数据1000次;
(9)消谐元件出口功率大、无触点;
(10)通过中文界面提示和面板按键整定,调试和维护简单、方便;
(11)接线简单,安装方便;
(12)硬件、软件冗余设计,抗干扰能力强;
(13)适用于各种电压等级的PT;
(14)可配置硬结点及通信接口把各种故障信息传送至综合自动化系统,并能够接收综合自动化系统的对时信息实现时钟同步,适用于无人职守变电站。
谐波主要是由于大容量整流或换流设备以及其它非线性负荷,导致电流波形畸变造成的。我们对这些畸的变交流量进行傅立叶级数分解,即可得到50Hz的基波分量和频率为基波分量整数倍的谐波分量。
★ 影响供电系统的稳定运行:供配电系统中的电力线路与电力变压器,一般采用电磁继电器,感应式继电器或新式微机保护进行检测保护,在系统中这些属于敏感元件,继电器受到高次谐波的影响容易产生误动作,微机保护由于采用了整流采样电路,也及易受到谐波的影响导致误动或拒动,这样谐波严重威胁供电系统的稳定与安全运行。
★ 影响电网的质量:高次谐波能使电网的电压与电流波形发生畸变,另外相同频率的谐波电压与谐波电流要产生同次谐波的有功功率和无功功率,从而降低电网电压,增加电路损耗,浪费电网容量。
★ 影响供电系统的无功补偿设备:供电系统变电站均有无功补偿设备,当谐波注入电网时容易造成高压电容过电流和过负荷,使电容异常发热:另外谐波的存在还会加快电容器绝缘介质的老化,缩短电容的使用寿命。
★ 影响电力变压器的使用:谐波的存在会使电力变压器的铜损和铁损增加,直接影响变压器的使用效率;还会造成变压器噪声增加,缩短变压器的使用寿命。
★ 影响用电设备:谐波的存在会造成异步电机电动机效率下降,噪声增大;使低压开关设备产生误动作;对工业企业自动化的正常通讯造成干扰,影响电力电子计量设备的准确性。
1.2.3治理谐波及补偿无功功率的重要性
采用专门的滤波装置能够有效的滤除高次谐波,同时向电网提供容性无功功率,其重要性主要表现在以下方面:
★ 滤除高次谐波能够定化用电环境,降低视在功率,减少谐波电流在用电设备和输配电设备中的发热,直接节省有功功率;消除由于谐波产生的震动,延长电器的使用寿命;有效的消除对敏感元件的影响。
★ 由于滤波回路是由电抗器和电容器串联形成的,所以在滤波的过程中能向电网注入容性无功,提高了功率因数,这样就能避免供电部门高额的功率因数调整电费,由于无功电流的抵消,也相当于提高了配电设备的容量,减少了线损。无功功率补偿还能提升末端的电网电压,对优化用电环境有很重要的意义。
在设计滤波器时,首先应满足各种负载水平下对谐波限制的技术要求,然后在次前提下,使滤波器在经济上最为合理。除以上经济分析外,设计滤波器还应注意以下两点:
1)单调滤波器的谐振频率会因电容,电感参数的偏差或变化而改变,电网频率会有一定的波动,这将导致滤波器失谐。设计时应保证在正常是谐的情况下滤波装置仍能满足各项要求。
2)电网阻抗变化对滤波装置尤其是其中的单调谐滤波器的滤波效果有较大影响,而更为严重的是,电网阻抗与滤波装置有发生并联谐振的可能,设计时应充分予以考虑。
对电压谐波智能监测及消谐装置进行了整体设计。选择STR710作为核心处理器,以CS8900A以太网控制器和双向晶闸管等作为外围芯片,在IAR EmbeddedWorkbench for ARM version 4.31环境下利用FFT算法实现了谐波监测的软件仿真,最后介绍了嵌入式以太网接口的设计与实现。
在分析了电力系统铁磁谐振现象和危害的基础上,提出了一种单片机控制的智能在线监控电压互感器工况及自动消除铁磁谐振的方法,并介绍了如何利用该方法进行硬件和软件的设计。
一次消谐装置概述
一次消谐装置适用于电压互感器中性点的非线性电阻消谐阻尼器(消谐器),是安装在电压互感器(压变)一次绕组上,中性点与地之间的一种非线性电阻消谐阻尼器件。本产品是新的改型设计、电阻器外表裸露、无须绝缘外套保护、圆柱外形的消谐器。与之前只是外形不同,电气性能完全相同。
1.1微机消谐装置
微机消谐装置也称二次消谐器,被安装在TV的开口三角绕组上。正常运行或者发生单相接地故障时装置不动作,而一旦判断电网发生铁磁谐振时,便会使正反并联在开口三角两端的2只晶闸管交替过零触发导通以限制和阻尼铁磁谐振,当谐振消除后晶闸管自行截止,必要时可以重复动作。装置起动消谐期间,晶闸管全导通,呈低阻态,电阻为几m欧至几十m欧。如此小的电阻值足以阻尼高频、基频及分频3种谐振,而且对整个电网有效,即一个系统中只需选择1台互感器安装消谐装置即可。微机消谐装置的主要缺点是难以正确区分基波谐振和单相接地。目前,对基波谐振和单相接地故障判据的主要区别在于零序电压U0的高低。通常,基频谐振定为当U0≥150V时;当30V≤U0<145V时定为单相接地故障。为了防止在单相接地时由于装置误动使TV长时间过负荷而烧毁的情况发生,通常将该装置基频谐振的判据电压定得比较高。这样,在工频位移电压不是很高的情况下(如空母线合闸)装置将无法动作,就可能使某些励磁特性欠佳、铁心易饱和TV的熔丝熔断。而且这种装置当电网对地电容较大时,它对防止间歇性接地或接地消失瞬间互感器因瞬时饱和涌流而造成熔丝熔断的事故无能为力。此外,在持续时间较长的间歇电弧过电压激发下,流过TV高压绕组的电流将显著增大,仍可能会烧坏TV。
由于基频谐振中的频率实际上并不是十分严格的基频,不是完全没有频率突变,因此,能否在信号处理方法中采用对时频局部化方面极具优势的小波来检测,值得探讨。
1.2一次消谐阻尼器
一次消谐阻尼器,如LxQ型阻尼器,实际上是将一个非线性消谐电阻R。串接于电压互感器一次侧中性点与地之间,它采用中性点阻尼电阻消除谐振。电网正常运行时,消谐器上电压<500V。呈高电阻值(可达几百k欧),阻尼作用大,使谐振在起始阶段不易发展;当电网发生单相接地时,消谐器上电压较高(10kV电网中其值约1.7一1.8kV),R0呈低值(几十k欧),可满足TV开口三角电压不小于80V的绝缘监测要求,而且仍可阻尼谐振;当电网发生弧光接地时,R0仍能保持一定的阻值,限制互感器涌流。
该装置具有消除TV饱和谐振和限制涌流2种功能,但在应用中存在局限性:①中性点为半绝缘结构,只能直接接地安装的TV无法使用;②只能限制本TV不发生谐振,对电网中的其他TV无效(仅一对一有效;)③当发生单相接地故障时, TV零序电压U0的测量值有误差,因此不适宜使用在对U0幅值和角度精度要求较高的场合(如微机接地选线装置);④装置自身的热容量有限,即使选用热容量相对较大的以LXQ型一次消谐阻尼器,在持续时间较长的间歇电弧接地过电压激发下,仍可损坏装置。一次消谐阻尼器较适用于JDZJ等型号中性点全绝缘TV的消谐改造。
1.3消谐型电压互感器
1.3.1加装零序电压互感器型
加装零序电压互感器圈的消谐型电压互感器由三相主电压互感器TV1和串接在中性点的零序电压互感器TV0二部分组成,采用零序电压互感器消除谐振。该消谐装置要求TV0的开口三角绕组闭合,零序电压U0从TV0的二次侧取得。当单相接地时, TV每相励磁感抗为Xm=XTv1 3XTv0(XTv1为TV1的漏抗;凡XTv0为TV0励磁感抗)。
由于XTv1很小,可略,故Xm≈3 XTv0,即零序电压绝大部分降落在TV0上,一般的外激发不能使TV,进人饱和区,从而使谐振难以产生。此外,TV0高压绕的直流电阻约为10k欧,对谐振有强烈的阻尼作用,对涌流有限制作用。此种消谐型TV的消谐作用也仅对自身有效,热容量也有限。
1.3.2呈容抗谐振型
呈容抗谐振的消谐型电压互感器的主要特点有:
①互感器内部的分布电容和杂散电容较大,正常时,在接有0~100%负荷下整体呈容性(结构上合理确定一次绕组径向与轴向的尺寸比例;采用介电系数大的绝缘材料作为层间绝缘犷一次绕组采用阶梯式排线方式等),不易构成铁磁谐振回路。②在较高的电压作用下,铁心不易饱和(采用优质硅钢片,以降低工作磁密)〕③能承受更高的过电压(增加了一次绕组匝数;加强一次绕组的端部绝缘和层间绝缘)。然而,由于这种TV的质量和体积相对较大,因此在实际应用中往往有一定困难。
TSH2007-XK型微机消谐装置是针对电力系统由于铁磁谐振而时常发生的电压互感器(PT)烧毁甚至爆炸的恶性事故,研制生产的智能消谐装置。装置以32位单片机ARM7作为采样运算、逻辑判断和控制中心(CPU),经大功率、无触点消谐元件为出口。以液晶显示器(LCD)、信号指示灯、触摸按键为人机接口,配以智能化的软件,组成了技术和原理先进,使用简单方便的诊断、消谐、记录装置。