中文名 | 直线电机 | 外文名 | linear motor |
---|---|---|---|
别 名 | 线性电机 | 类 型 | 平板式和U 型槽式,和管式 |
特 点 | 电磁能转化为线性机械能直接作用于负载 |
圆柱形动磁体直线电机动子是圆柱形结构。沿固定着磁场的圆柱体运动。这种电机是最初发现的商业应用但是不能使用于要求节省空间的平板式和U 型槽式直线电机的场合。圆柱形动磁体直线电机的磁路与动磁执行器相似。区别在于线圈可以复制以增加行程。典型的线圈绕组是三相组成的,使用霍尔装置实现无刷换相。推力线圈是圆柱形的,沿磁棒上下运动。这种结构不适合对磁通泄漏敏感的应用。必须小心操作保证手指不卡在磁棒和有吸引力的侧面之间。
管状直线电机设计的一个潜在的问题出现在,当行程增加,由于电机是完全圆柱的而且沿着磁棒上下运动,唯一的支撑点在两端。保证磁棒的径向偏差不至于导致磁体接触推力线圈的长度总会有限制。
U 型槽式直线电机有两个介于金属板之间且都对着线圈动子的平行磁轨。动子由导轨系统支撑在两磁轨中间。动子是非钢的,意味着无吸力且在磁轨和推力线圈之间无干扰力产生。非钢线圈装配具有惯量小,允许非常高的加速度。线圈一般是三相的,无刷换相。可以用空气冷却法冷却电机来获得性能的增强。也有采用水冷方式的。这种设计可以较好地减少磁通泄露因为磁体面对面安装在U形导槽里。这种设计也最小化了强大的磁力吸引带来的伤害。
这种设计的磁轨允许组合以增加行程长度,只局限于线缆管理系统可操作的长度,编码器的长度,和机械构造的大而平的结构的能力。
有三种类型的平板式直线电机(均为无刷):无槽无铁芯,无槽有铁芯和有槽有铁芯。选择时需要根据对应用要求的理解。
无槽无铁芯平板电机是一系列coils安装在一个铝板上。由于FOCER 没有铁芯,电机没有吸力和接头效应(与U形槽电机同)。该设计在一定某些应用中有助于延长轴承寿命。动子可以从上面或侧面安装以适合大多数应用。这种电机对要求控制速度平稳的应用是理想的。如扫描应用,但是平板磁轨设计产生的推力输出最低。通常,平板磁轨具有高的磁通泄露。所以需要谨慎操作以防操作者受他们之间和其他被吸材料之间的磁力吸引而受到伤害。
无槽有铁芯:无槽有铁芯平板电机结构上和无槽无铁芯电机相似。除了铁芯安装在钢叠片结构然后再安装到铝背板上,铁叠片结构用在指引磁场和增加推力。磁轨和动子之间产生的吸力和电机产生的推力成正比,叠片结构导致接头力产生。把动子安装到磁轨上时必须小心以免他们之间的吸力造成伤害。无槽有铁芯比无槽无铁芯电机有更大的推力。
有槽有铁芯:这种类型的直线电机,铁心线圈被放进一个钢结构里以产生铁芯线圈单元。铁芯有效增强电机的推力输出通过聚焦线圈产生的磁场。铁芯电枢和磁轨之间强大的吸引力可以被预先用作气浮轴承系统的预加载荷。这些力会增加轴承的磨损,磁铁的相位差可减少接头力。
线性电机简介
该图直线电机明确显示动子(forcer,rotor)的内部绕组.磁鉄和磁轨.动子是用环氧材料把线圈压成的。而且,磁轨是把磁铁固定在钢上。
直线电机经常简单描述为旋转电机被展平,而工作原理相同。动子(forcer,rotor) 是用环氧材料把线圈压缩在一起制成的;磁轨是把磁铁(通常是高能量的稀土磁铁)固定在钢上。电机的动子包括线圈绕组,霍尔元件电路板,电热调节器(温度传感器监控温度)和电子接口。在旋转电机中,动子和定子需要旋转轴承支撑动子以保证相对运动部分的气隙(air gap)。同样的,直线电机需要直线导轨来保持动子在磁轨产生的磁场中的位置。和旋转伺服电机的编码器安装在轴上反馈位置一样,直线电机需要反馈直线位置的反馈装置--直线编码器,它可以直接测量负载的位置从而提高负载的位置精度。
直线电机的控制和旋转电机一样。像无刷旋转电机,动子和定子无机械连接(无刷),不像旋转电机的方面,动子旋转和定子位置保持固定,直线电机系统可以是磁轨动或推力线圈动(大部分定位系统应用是磁轨固定,推力线圈动)。用推力线圈运动的电机,推力线圈的重量和负载比很小。然而,需要高柔性线缆及其管理系统。用磁轨运动的电机,不仅要承受负载,还要承受磁轨质量,但无需线缆管理系统。
相似的机电原理用在直线和旋转电机上。相同的电磁力在旋转电机上产生力矩在直线电机产生直线推力作用。因此,直线电机使用和旋转电机相同的控制和可编程配置。直线电机的形状可以是平板式和U 型槽式,和管式.哪种构造最适合要看实际应用的规格要求和工作环境。
直线电机可以认为是旋转电机在结构方面的一种变形,它可以看作是一台旋转电机沿其径向剖开,然后拉平演变而成。随着自动控制技术和微型计算机的高速发展,对各类自动控制系统的定位精度提出了更高的要求,在这种情况下,传统的旋转电机再加上一套变换机构组成的直线运动驱动装置,已经远不能满足现代控制系统的要求,为此,世界许多国家都在研究、发展和应用直线电机,使得直线电机的应用领域越来越广。
直线电机与旋转电机相比,主要有如下几个特点:一是结构简单,由于直线电机不需要把旋转运动变成直线运动的附加装置,因而使得系统本身的结构大为简化,重量和体积大大地下降;二是定位精度高,在需要直线运动的地方,直线电机可以实现直接传动,因而可以消除中间环节所带来的各种定位误差,故定位精度高,如采用微机控制,则还可以大大地提高整个系统的定位精度;三是反应速度快、灵敏度高,随动性好。直线电机容易做到其动子用磁悬浮支撑,因而使得动子和定子之间始终保持一定的气隙而不接触,这就消除了定、动子间的接触摩擦阻力,因而大大地提高了系统的灵敏度、快速性和随动性;四是工作安全可靠、寿命长。直线电机可以实现无接触传递力,机械摩擦损耗几乎为零,所以故障少,免维修,因而工作安全可靠、寿命长。
直线电机主要应用于三个方面:一是应用于自动控制系统,这类应用场合比较多;其次是作为长期连续运行的驱动电机;三是应用在需要短时间、短距离内提供巨大的直线运动能的装置中。
高速磁悬浮列车 磁悬浮列车是直线电机实际应用的最典型的例子,美、英、日、法、德、加拿大等国都在研制直线悬浮列车,其中日本进展最快。
直线电机驱动的电梯 世界上第一台使用直线电机驱动的电梯是1990年4月安装于日本东京都丰岛区万世大楼,该电梯载重600kg,速度为105m/min,提升高度为22.9m。由于直线电机驱动的电梯没有曳引机组,因而建筑物顶的机房可省略。如果建筑物的高度增至1000米左右,就必须使用无钢丝绳电梯,这种电梯采用高温超导技术的直线电机驱动,线圈装在井道中,轿厢外装有高性能永磁材料,就如磁悬浮列车一样,采用无线电波或光控技术控制。
超高速电动机 在旋转超过某一极限时,采用滚动轴承的电动机就会产生烧结、损坏现象,国外研制了一种直线悬浮电动机(电磁轴承),采用悬浮技术使电机的动子悬浮在空中,消除了动子和定子之间的机械接触和摩擦阻力,其转速可达25000~100000r/min以上,因而在高速电动机和高速主轴部件上得到广泛的应用。如日本安川公司新近研制的多工序自动数控车床用5轴可控式电磁高速主轴采用两个径向电磁轴承和一个轴向推力电磁轴承,可在任意方向上承受机床的负载。在轴的中间,除配有高速电动机以外,还配有与多工序自动数控车床相适应的工具自动交换机构。
电机中的同步电机是线性系统,其它电机不是线性系统。电机(英文:Electric machinery,俗称"马达")是指依据电磁感应定律实现电能转换或传递的一种电磁装置。在电路中用字...
线性负载:linear load 当施加可变正弦电压时,其负载阻抗参数(Z)恒定为常数的那种负载。在交流电路中,负载元件有电阻R、电感L和电容C三种,它们在电路中所造成的结果是不相同的。在纯电阻电路中...
你可以用异型圈梁来画啊,钢筋就可以直接输入啦.. 当然有时候钢筋会有不规则的,还是得在其它钢筋里面输入或单构件输入,也是得手算下长度的。这个看情况
直线电机选择规格主要是对于推力的选择,通常情况下有软件作为辅助工具。为了准确选择直线电机的推力,需要知道负载重量、有效行程、最大速度和最大加速度。辅助于选型软件,即可选择合适推力的电机。
(1)结构简单。管型直线电机不需要经过中间转换机构而直接产生直线运动,使结构大大简化,运动惯量减少,动态响应性能和定位精度大大提高;同时也提高了可靠性,节约了成本,使制造和维护更加简便。它的初次级可以直接成为机构的一部分,这种独特的结合使得这种优势进一步体现出来。
(2)适合高速直线运动。因为不存在离心力的约束,普通材料亦可以达到较高的速度。而且如果初、次级间用气垫或磁垫保存间隙,运动时无机械接触,因而运动部分也就无摩擦和噪声。这样,传动零部件没有磨损,可大大减小机械损耗,避免拖缆、钢索、齿轮与皮带轮等所造成的噪声,从而提高整体效率。
(3)初级绕组利用率高。在管型直线感应电机中,初级绕组是饼式的,没有端部绕组,因而绕组利用率高。
(4)无横向边缘效应。横向效应是指由于横向开断造成的边界处磁场的削弱,而圆筒型直线电机横向无开断,所以磁场沿周向均匀分布。
(5)容易克服单边磁拉力问题。径向拉力互相抵消,基本不存在单边磁拉力的问题。
(6)易于调节和控制。通过调节电压或频率,或更换次级材料,可以得到不同的速度、电磁推力,适用于低速往复运行场合。
(7)适应性强。直线电机的初级铁芯可以用环氧树脂封成整体,具有较好的防腐、防潮性能,便于在潮湿、粉尘和有害气体的环境中使用;而且可以设计成多种结构,满足不同情况的需要。
(8)高加速度。这是直线电机驱动,相比其他丝杠、同步带和齿轮齿条驱动的一个显著优势。
由定子演变而来的一侧称为初级,由转子演变而来的一侧称为次级。在实际应用时,将初级和次级制造成不同的长度,以保证在所需行程范围内初级与次级之间的耦合保持不变。直线电机可以是短初级长次级,也可以是长初级短次级。考虑到制造成本、运行费用,以直线感应电动机为例:当初级绕组通入交流电源时,便在气隙中产生行波磁场,次级在行波磁场切割下,将感应出电动势并产生电流,该电流与气隙中的磁场相作用就产生电磁推力。如果初级固定,则次级在推力作用下做直线运动;反之,则初级做直线运动。直线电机的驱动控制技术一个直线电机应用系统不仅要有性能良好的直线电机,还必须具有能在安全可靠的条件下实现技术与经济要求的控制系统。随着自动控制技术与微计算机技术的发展,直线电机的控制方法越来越多。
对直线电机控制技术的研究基本上可以分为三个方面:一是传统控制技术,二是现代控制技术,三是智能控制技术。传统的控制技术如PID反馈控制、解耦控制等在交流伺服系统中得到了广泛的应用。其中PID控制蕴涵动态控制过程中的信息,具有较强的鲁棒性,是交流伺服电机驱动系统中最基本的控制方式。为了提高控制效果,往往采用解耦控制和矢量控制技术。在对象模型确定、不变化且是线性的以及操作条件、运行环境是确定不变的条件下,采用传统控制技术是简单有效的。但是在高精度微进给的高性能场合,就必须考虑对象结构与参数的变化。各种非线性的影响,运行环境的改变及环境干扰等时变和不确定因素,才能得到满意的控制效果。因此,现代控制技术在直线伺服电机控制的研究中引起了很大的重视。常用控制方法有:自适应控制、滑模变结构控制、鲁棒控制及智能控制。主要是将模糊逻辑、神经网络与PID、H∞控制等现有的成熟的控制方法相结合,取长补短,以获得更好的控制性能。
在实用的和买得起的直线电机出现以前,所有直线运动不得不从旋转机械通过使用滚珠或滚柱丝杠或带或滑轮转换而来。对许多应用,如遇到大负载而且驱动轴是竖直面的。这些方法仍然是最好的。然而,直线电机比机械系统比有很多独特的优势,如非常高速和非常低速,高加速度,几乎零维护(无接触零件),高精度,无空回。完成直线运动只需电机无需齿轮,联轴器或滑轮,对很多应用来说很有意义的,把那些不必要的,减低性能和缩短机械寿命的零件去掉了。
对现行标准GJB971A-99《永磁式直流力矩电动机通用规范》和GB/T 10401-2008《永磁式直流力矩电动机通用技术条件》中,如何依据所测得数据计算转矩-电流线性度并未做详细规定,在实际电机测试中,如何应用Excel电子表格方便、准确、快速地得到转矩-电流线性度。
为了有效减少变速恒频双馈风电机组额定风速以上时的功率和转速波动,提出了一种同时考虑桨距角和双馈感应发电机转子励磁电压调节的新型恒功率控制策略。在分析风力机特性和双馈感应发电机基本电磁关系的基础上,建立了变速恒频双馈风电机组的非线性数学模型,并利用反馈线性化理论设计了非线性控制器。仿真结果表明,所提出的控制策略与现存的仅考虑桨距角或电磁转矩调节的恒功率控制策略相比,具有更好的功率调节特性。
1. 液压驱动式
以电机驱动,将高压油灌入油缸,驱动活动塞以驱动桥厢。速度慢,通常用于 20 米以下的建筑物。
2. 电机减速齿轮驱动式
以交、直流电机经减速齿轮及牵引机牵引钢索以驱动桥厢,多用于中低速梯。
3. 电机直接驱动式
又称 Gearless 型,以较大型多极电机直接带动牵引机,使用于高速梯,电控系统较为复杂。
4. 线性电机驱动式
以感应式或同步式线性电机驱动,电机置于升降道壁,动部( 相当于转部 )置于桥厢外壳,不必使用钢索,直接驱动桥厢。不受建物高低限制,但耗电量高,尚在开发试用阶段。
5. 无机房驱动式
将牵引电机直接装置于桥厢顶部或底部,牵引环绕钢索以驱动桥厢,使用于小型桥厢,用于个人电梯,可省去传统型的机房。
目前公司的产品已经广泛应用于:
1、电一机械转换
(1)电机:直流电机,步进电机,磁滞电机,线性电机、伺服电机等。
(2)发电机(桂林梧州等地)。
(3)传动装置:磁光记录、激光聚焦、打印头、计算机磁盘驱动器中的VCM等。
(4)测量仪表。
(5)电流控制:舌簧开关、涡流电机过速开关等。
2、电一声转换
(1)发声装置:扬声器、耳机、电话等。
(2)接收声装置:听筒、超声播音器等。
(3)其它音频变换器。
3、磁一机械力或转矩
(1)固定或提升装置:各种磁吸盘(磁吊)、房门吸块、冰箱密封条等。
(2)处理装置:磁分离、复印机磁辊等。
(3)磁力耦合及制动装置等。
(4)磁性轴承、磁悬浮列车等。
(5)电子称。
4、微波器件、电子束、离子束聚焦
(1)功率管:磁控管,周期性永磁体(PPM)。
(2)波导管器件。
(3)粒子加速器:同步加速器辐射源,自由电子激光等。
(4)质谱仪:偏转磁体,α一质谱仪等。
(5)阴极射线管:离子阱,聚焦等。
5、传感器、电信号传输,转变
(1)利用磁性:霍耳效应,磁阻,温度敏感元件等。
(2)利用体积效应:位置、速度、加速度,液体流量、压力、振动等。
(3)利用面积效应:计算机读写磁头。
6、医疗及生物
(1)医疗设备:磁共振成象仪(MRI)。
(2)牙科器具:牙齿的固定,矫形等。
(3)外科器具。
(4)磁疗及磁首饰等。
7、其它应用
(1)磁性销。
(2)真空技术。
(3)磁位存储偏置场等。
永磁合金是一种重要的,现代工业和科学技术不可缺少的功能材料。人们利用磁能与磁能、磁能与电能的相互作用,将磁能转换成电能或机械能;利用磁场对物质的作用,改变物质的微观结构,促进节能和环保作用等。在所有这些装置或器件中永磁合金都担当着重要的功能作用。
其主要用途有:(1)机电设备和装置。主要包括:各种永磁电动机如直流(整流式和无刷)电机、同步电机、回转和线性电机、伺服电机、转矩或步进电机;各种永磁发电机如交流发电机、辅助励磁机、多相同步机、点火或其他脉冲发电机等;各种机电制动器如打印机打字头驱动器、计算机软盘驱动器(也称音圈电机VCM)、激光聚焦与跟踪器(用于激光唱盘、录像机、数据处理机)。飞机测位制动器、机器人等;动圈式电表及断路器、微型位移继电器等。
(2)声波换能器。包括:各种发声器,如扬声器、耳机、电话受话器、电铃、蜂鸣器及超声波发声器等;声音接收器,如话筒、超声波拾音器;以及声像拾音器等。
(3)磁力机械。主要利用磁力的吸引与排斥作用制作:夹持和提升装置,如电磁起重机、机床夹盘和夹具、冰箱门封、广告标记和玩具;牵引装置,如传送带、选矿机、复印机磁鼓;耦合器,如同步扭矩联轴节、磁水泵、线性跟随器、油浮标等;磁轴承和磁悬浮,如无源电度表、超速离心器、陀螺仪、卫星动能轮、涡流分子泵、磁悬浮车辆等。
(4)微波装置。制作各种功率管(如磁控管、行波管和调速管)用脉冲位置调整聚焦装置,正交场放大器,波导装置和粒子加速器等。
(5)传感器和电信号转换器。包括永磁转换器(感应器和霍尔效应仪)及物理量(位置,速度,加速度,流量,压力,温度等)测量传感器。
(6)医用电子仪器和生物工程。有核磁共振成像装置、牙科添料、起搏器、人工心脏泵、诊断用仪器及微型助听器等。
(7)其他方面。有磁锁,磁性宝石,除蜡器,汽车减烟节油器等。