相容剂又称增容剂,是指借助于分子间的键合力,促使不相容的两种聚合物结合在一体,进而得到稳定的共混物的助剂,这里是指高分子增容剂。
PE-g-ST、PP-g-ST、ABS-g-MAH、PE-g-MAH、PP-g-MAH等,应用在塑料改性中,得到性能很好的共混性材料。
目前比较好的相容剂通常以马来酸酐接枝,马来酸酐单体和其它单体比较极性比较强,相容效果比较好。
马来酸酐接枝相容剂通过引入强极性反应性基团,使材料具有高的极性和反应性,是一种高分子界面偶联剂、相容剂、分散促进剂。主要用于无卤阻燃、填充、玻纤增强、增韧,金属粘结、合金相容等,能大大提高复合材料的相容性和填料的分散性,从而提高复合材料机械强度。
马来酸酐接枝相容剂可改善无机填料与有机树脂相容性,提高产品的拉伸、冲击强度,实现高填充,减少树脂用量,改善加工流变性,提高表面光洁度。
增加两种聚合物的相容性,使之两种聚合物间粘接力增大,形成稳定的结构,使分散相和连续相均匀,即相容化。相容剂之所以能使两种性质不同的聚合物相容化,是因为在其分子中具有分别能与两种聚合物进行物理或化学结合的基团的缘故。
所谓相容剂在热力学本质上可以理解为界面活性剂,但在高分子合金体系中使用的相容剂一般具有较高的分子量,在不相容的高分子体系中添加相容剂并在一定温度下经混合混炼后,相容剂将被局限在两种高分子之间的界面上,起到降低界面张力、增加界面层厚度、降低分散粒子尺寸的作用,使体系最终形成具有宏观均匀微观相分离特征的热力学稳定的相态结构。
在PBT外壳上注塑PVC,怎样才能相粘合,用相容剂可以吗,用的相容剂是什么?
估计不行,PBT的注塑温度高,PVC的注塑温度低。PBT的表面根本不会出现软化,粘合不到一起。不要说PVC,就是PBT注塑到PBT上,二次注塑,也够呛。如果用相容剂,估计也就是热熔胶一类的。
PG70-16级 4670元/T PG76-22级 4720元/T 2)进口改性沥青(基质沥青为sk70#) 4970元/T PG70-16级 5020元/T PG...
,它是一个单向开启的风量调节装置,按静压差来调整开启度,用重锤的位置来平衡风压。通过余压阀的风量一般在100-1200m3/h之间,维持压差在5-40Pa之间。
由于相容剂对高分子合金体系的混合性和稳定性会产生重要的影响,因此,相容剂的合理选择和使用对高分子合金技术的实现是至关重要的。根据相容剂的基体高分子之间的作用特征,相容剂可分为两类,即非反应型相容剂和反应型相容剂。
一、非反应型相容剂
非反应型相容剂是目前比较通用相容剂。在不相容的高分子体系中通过添加非反应型相容剂而实现相容化的方法,在高分子合金技术中是最常见的。非反应型相容剂一般为共聚物,可以是嵌段共聚物,也可以是接枝共聚物或无规共聚物。
二、反应型相容剂
反应型相容剂是一种同非极性高分子主链Pc及活性基团(如羟基、环氧基组成,多为无规的)组成的聚合物。由于它的非极性高分子主体能与共混物中的非极性聚合物相容,而极性基团又能与共混物的极性聚合物的活性基团反应或键合,故能起到很好的相容作用。
一般是大分子型的,其活性官能团可以在分子的末端,也可以在分子的侧链上,其大分子主链可以和共混体系中的至少一种高分子基体相同,也可以不同,但在不同的情况下,其大分子主链应和共混体系中的至少一种高分子基体有较好的相容性。
(1)环状酸酐型(MAH)。环状酸酐型类反应型相容剂是目前最常用的一类反应型相容剂。其中,以马来酸酐接枝到聚烯烃上的马来酸酐相容剂为主,其接枝率一般为0.8%-1.0%,主要应用于聚烯烃塑料的改性。将马来酸酐接枝到PS或以PS为基体的二元或多元共聚反应型相容剂,可应用于PA/PC、ABS/GF、PA/ABS的改性、共混或合金。一般用量5%-8%。
但此类相容剂可能会降低塑料合金的热变形温度,易使共混组分产生一结不需要的交联和降解,使反应不再能被控制。主要应用于PP/PA6、PP/PA66等合金或共混。一般用量为5%-8%。
(2)羧酸型。羧酸类中的代表产品为丙烯酸型相容剂。通常是将丙烯酸接枝到聚烯烃树脂上,用途大体与马来酸酐型相同。
(3)环氧型。环氧型反应型相容剂是环氧树脂或具有环氧基的化合物与其他聚合物接枝共聚而成。这类反应型相容剂能起到良好的相容作用。
(4)恶唑啉型。用恶唑啉接枝的PS,即RPS,是一种比较重要的相容剂,接枝率为1%,特点是应用领域较广,不仅能与一般的含氨基或羧基的聚合物反应,还可与含羰基、酸酐、环氧基团反应,生成接枝共聚物。因此,它可以用于PS及多种工程塑料或经改性的聚烯烃树脂。此外,它还可以"就地"相容化,直接用于塑料改性、共混和合金。
(5)酰亚胺型。酰亚胺型为改性聚丙烯酸酯、主要适用于PA/PO、PC/PO、PA/PC等工程塑料合金或共混。
(6)异氰酸酯型。其成分为间-异丙烯基-2,2-二甲基苯酰异氰酸酯。可用于含有氨基及羧基的工程塑料合金。
(7)低分子型。低分子型相容剂是反应型相容剂,以反应型单体及低分子量聚合物,包括一些能与塑料合成的一个组分相容,并与另一组分反应、交联或键合,从而形成塑料合金的有机和无机化合物。这样,不仅简化了制造塑料合金的过程,而且原料易得,成本较低。不过,对挤出机的要求较高,采用混炼型挤出机,是生产低分子相容剂的重要关键。
(1)应用于塑料合金。相容剂的出现主要是为高分子材料合金技术服务的。所谓高分子合金,即由两种或两种以上具有不同性质的高分子材料经共混并采用相应的相容化技术而得到的多相多组分体系。而这样的高分子合金、共混、改性的重要关键材料就是相容剂。相容剂对合金技术的微观相态结构起到很好的调整和控制作用,而使共混材料实现高性能化和功能化的效果。相容剂广泛应用于PP/PE、PP/PA、PA/PS、PA/ABS、ABS/PC、PBT/PA、PET/PA、PP/POE、PE/EPDM、TPE/PU等合金。
(2)应用于聚合物的改性。由于相容剂是以活跃自由基分子羧基掺入非极性与极性聚合物之间起"桥梁"作用,将其改性成为极性的改性聚合物,再使其与极性的聚合物共混,两者之间进行反应而制得良好的改性共混效果。
(3)应用在回收废旧塑料。利用相容剂回收废旧塑料,使之成为新的塑料合金或新的改性塑料,是"废物综合利用"比较好的可行办法,并可解决"白色污染"问题,具有很大的社会效益和企业经济效益。在国外已有很多先例,如荷兰国家矿业公司生产的BENNET相容剂,就是用于回收废旧塑料再生的专用相容剂,可以把两种或多种不同品种、不同性质的旧塑料,如聚烯烃塑料与工程塑料的边角料的共混再生,添加5%-10%相容剂作为海相或岛相之间的界面层,发挥相容剂的键合力极性相容基团效率,而制备成为一种新的塑料合金或改性塑料。
(4)应用于塑料与填料的偶联。相容剂又称大分子偶联剂。由于具有高分子部分与高分子聚合物相容,因此,相容剂对聚合物与填料之间的偶联效率优异,可用于PE/CaCO3、PE/滑石粉、PA/GF、PRT/GT等偶联处理,效果良好。
(5)应用于极性树脂的增韧。热塑性弹性体,具有良好的柔软性、高弹性和低温性能,添加一定量的相容剂可以作为PP、PE、PS、PA、PC等塑料的增韧剂。而相容剂正是这些增韧剂的最关键性的"核"、"壳"相容作用。如EPDM接枝MAH增韧剂,可在-45℃的温度下,保持优良的物理性能和坚韧性能。一般用量5%-10%。
(6)应用于改善塑料的性能。相容剂还可用于改善塑料的粘接性和改善塑料的抗静电、印刷性、光泽性等的表面性能。
应用范围
(1) 氢氧化铝、氢氧化镁、滑石粉、碳酸钙、硫酸钡、木粉、云母、钛白粉、色粉、玻纤、尼龙等填充。
(2) PET、PBT、PA增韧剂。
(3) PP/PA、PC/ABS、PC/PBT、ABS/PBT、PS/PBT合金相容剂
ST-1 用于PA、PET、PBT等及其合金材料的相容剂与增韧剂。
ST-2 用于PE、PP及其改性材料的相容剂与增韧剂。
ST-3 用于聚烯烃低烟无卤阻燃电缆料相容剂,提高拉伸强度和伸长率,增加无机物的添加量。
ST-4 用于PS/PP 、ABS/PC、ABS/PA、PS/PE等合金改性,提高产品的韧性、相容性等综合性能。
ST-5用于聚丙烯填充母料、色母料、阻燃母料、降解母料。
ST-6用于聚乙烯塑木、填充母料、色母料、阻燃母料、铝塑复合、铁塑复合、聚烯烃/尼龙体系的相容
ST-7用于低烟无卤阻燃电缆料、聚乙烯填充母料、色母料、阻燃母料、铝塑复合聚乙烯膜、丝。
ST-8 用于AS/PP、ABS/PC、ABS/PE、ABS/PA、ABS/PET合金相容化。
ST-9 用于阻燃、增强类ABS/PA 、PC/ABS、ABS/PP合金相容剂。
相容剂是一种新型功能塑料助剂,也叫增容剂、高分子偶联剂、大分子有机聚合物相容剂。相容剂是为了克服一些聚合物在共混时相容性差的缺点,其作用是降低界面张力,加入的第三组分增大界面层厚度,阻止分散相凝聚,稳定已形成的相形态结构,以增加两种聚合物的相容性,使之相互间黏结力增大,形成稳定的共混结构。聚合物共混改性的关键是提高不同聚合物的相容性,而加入适量的相容剂能使其具有良好的相容性。解决共混物在注塑、挤出等加工时会产生分层、表面出现脱皮、制品强度低等问题。论坛里面的很多坛友对相容剂进行了深入的讨论,现将一部分帖子整理如下,供读者参考。我刊今后将不定期将"中塑互联,http://bbs.ourplas.cn"上优秀的帖子整理刊发,敬请读者关注。
相容剂是一种新型功能塑料助剂,也叫增容剂、高分子偶联剂、大分子有机聚合物相容剂。相容剂是为了克服一些聚合物在共混时相容性差的缺点,其作用是降低界面张力,加入的第三组分增大界面层厚度,阻止分散相凝聚,稳定已形成的相形态结构,以增加两种聚合物的相容性,使之相互间黏结力增大,形成稳定的共混结构。聚合物共混改性的关键是提高不同聚合物的相容性,而加入适量的相容剂能使其具有良好的相容性。解决共混物在注塑、挤出等加工时会产生分层、表面出现脱皮、制品强度低等问题。论坛里面的很多坛友对相容剂进行了深入的讨论,现将一部分帖子整理如下,供读者参考。我刊今后将不定期将“中塑互联,http://bbs.ourplas.cn”上优秀的帖子整理刊发,敬请读者关注。
主要靠加入各种添加剂来解决。
(1)偶联剂法
偶联剂可以提高无机填料、无机纤维与基体树脂之间的相容性,同时也可改善木粉与聚合物之间的界面状况。硅烷偶联剂和钛酸酯偶联剂是应用最广泛的两类偶联剂。实验表明,这两种偶联剂都能改善填料与树脂的相容性。
(2)相容剂法
加入相容剂是最简单而且很有效的方法。据报道,合适的相容剂有马来酸酐等接枝的植物纤维或马来酸酐改性的聚烯烃树脂、丙烯酸酯共聚物、乙烯丙烯酸共聚物。这些相容剂中大部分含有羧基或酐基,能够与木粉中的羟基发生酯化反应,从而降低木粉的极性和吸湿性,使其与树脂有很好的相容性。
由于木粉中主要成分是纤维素,纤维素中含大量的羟基,这些羟基形成分子间氢键或分子内氢键,使木粉具有吸水性,吸湿率可 达8%~12%,且极性很强;而热塑性塑料多数为非极性的,具有疏水性,所以两者之间的相容性较差,界面的粘结力很小。使用适当的添加剂来改性聚合物—木粉表面,可以提高木粉与树脂之间的界面亲和能力,且改性的木粉填料具有增强的性质,能够很好地传递填料与树脂之间的应力,从而达到增强复合材料强度的作用。因此,要得到性能优良、符合条件的塑木复合材料,首先要解决的是材料相容性的问题。
浅谈相容剂结构在聚合物合金共连续结构调控中的作用及相容剂行业发展趋势
——访湖北大学材料科学与工程学院副院长施德安教授
湖北大学材料科学与工程学院副院长施德安教授
在第五届聚合物相容化技术国际高峰论坛上,小编采访到湖北大学材料科学与工程学院副院长施德安教授,他重点介绍了相容剂结构对共连续结构的共混体系的形成与稳定性的影响,也分享了他对相容剂行业发展道路的独到看法。
在制备不相容聚合物合金时,由于两相界面的界面张力过大,少数相尺寸偏大,合金材料的各项性能都很差,此时,相容剂的加入是必须的。一般来说,主要的界面相容剂有嵌段共聚物、接枝共聚物、无机纳米粒子或Janus粒子。无论是用何种相容剂,其实现增容的前提是相容剂必须能稳定存在于不相容体系的两相界面上,而判断增容效果的标准一般是少数相尺寸的大小。 施德安教授认为:“很多情况下不仅要关注少数相的尺寸,而且还要关注其形状。如何控制合金相形态结构也是高分子合金制备过程中一个相当重要的环节。”
在通常情况下,不相容体系或部分相容体系中的少数相都是以颗粒状分散于连续相中,形成所谓的“海岛”结构。目前已经实现商品化的聚合物共混体系大多都具有这种结构,比如常见的橡胶增韧塑料体系就是其典型代表。施德安教授介绍,在聚合物合金加工过程中,聚合物共混体系中的分散相在一定阶段会形成拉长的纤维状或层状结构,然而,这种热力学不稳定结构通常寿命很短,随着混合过程的进行,拉长结构会发生破裂或者回缩,最后形成海岛结构;但如果这种拉长的热力学不稳定结构存在的时间能够被延长,其在加工过程中会发生聚并而在原来的连续相中形成另外一个三维的连续相,得到具有共连续结构的共混物。与普通的海岛结构聚合物合金相比,具有共连续结构的共混体系的拉伸强度大于具有相似组成的海岛结构体系,而且大于各组分强度的简单加成;而且对于具有共连续结构的体系,人们很容易用选择性溶剂将其中的一相抽去掉,得到多孔材料,比如多孔膜可以充当过滤,及其他的一些功能性的应用。制备共连续结构合金一直是共混改性领域的研究热点。
由于不相容体系共连续结构是热力学不稳定结构,其在混炼过程中形成的难易程度由拉长的少数相粒子寿命及其聚并难易程度决定。拉长相寿命越长,聚并越容易,则共连续结构越容易形成。因此,在两相粘度比及其它加工条件合适的情况下,如何通过增容剂结构的调控来延长分散的拉长相结构的寿命且不阻碍其聚并是得到共连续结构的关键。
施德安教授认为,不对称结构的嵌段或接枝共聚物在热力学上有利于形成大曲率半径的界面,且较短链段的存在有利于少数相粒子的聚并和形成共连续结构;然而界面处较短链段的存在会使得界面缠结度降低,界面强度下降,不利于剪切应力的传递,使得少数相粒子在剪切过程中很难被拉长,一般加工条件下共连续结构仍然难以形成。而且具有不对称结构的共聚物相容剂很容易在其长链的一相中形成胶束而失去增容的作用,这也是影响共连续结构形成的因素之一。实践证明,只用单一不对称结构相容剂,需要在高温(玻璃化温度或熔点以上)长期退火才能得到具有共连续结构的产物,没有实际应用价值。
施德安教授提出将具有对称和不对称结构的共聚物增容剂并用,一定含量的对称结构相容剂分子存在于两相界面处,有利于界面应力的传递,使得少数相粒子容易被拉长,而界面处不对称结构的相容剂分子又能有效稳定这种拉长的少数相粒子,从而在加工过程中成功得到了具有共连续结构的聚合物合金。
施德安教授认为,无论是形成海岛结构还是共连续结构,相容剂分子都必须处于两相界面处,才能起到相应的增容作用。因此,很多相容剂失效的事例其实可能并不是相容剂分子本身不适合,而是由于其分子结构与相应的基体不匹配(如分子量差异悬殊)或者加工条件选择不合适(强剪切将相容剂分子从两相界面处拉出)等因素造成的。
对于相容剂的生产厂家而言,一方面要根据客户的需要设计出不同结构的,适应不同体系的相容剂,另一方面还必须培养一批业务过硬的技术服务人员,能帮助客户解决相容剂使用过程中出现的问题。例如同样的相容剂产品时,可能A客户用得很好,B客户使用起来却不一定好。而A、B两个客户的基体树脂种类也是相同的。以POE-g-MAH增韧玻纤增强的PA6为例,PA6基体树脂的粘度对POE-g-MAH在复合体系中的分布情况会有很大影响,从而也会影响到材料的最后性能。因此,针对不同的基体树脂,要选用流动性不同的POE-g-MAH。
“同一种相容剂在不同的体系,可能起的作用完全不一样。这既是相容剂行业的一大挑战,也是它的重要机遇,”施德安教授总结道,“对于相容剂厂家而言,比产品更重要的是服务。如果能跟上客户的产品升级换代步伐,及时解决客户在产品使用上的问题,相容剂生产厂商将在市场上立于不败之地!”