相变应力是由于某些合金在凝固后冷却过程中产生相变,随之带来体积尺寸变化,或热 理过程中因工件不同部位组织转变不同步而产生的内应力,不同部位在不同时间内发生相变所致。
定义解释
铸造应力包括热应力、相变应力及收缩应力三种。各种应力产生的原因不尽相同。
①热应力热应力是由于铸件不同的几何形状相交处断面厚薄不均,冷却不一致引起的。在薄壁处形成压应力,导致在铸件中残留应力。
②相变应力相变应力是由于某些铸铝合金在凝固后冷却过程中产生相变,随之带来体积尺寸变化。主要是铝铸件壁厚不均,不同部位在不同时间内发生相变所致。
③收缩应力铝铸件收缩时受到铸型、型芯的阻碍而产生拉应力所致。这种应力是暂时的,铝铸件开箱是会自动消失。但开箱时间不当,则常常会造成热裂纹,特别是金属型浇注的铝合金往往在这种应力作用下容易产生热裂纹。铸铝合金件中的残留应力降低了合金的力学性能,影响铸件的加工精度。铝铸件中的残留应力可通过退火处理消除。合金因导热性好,冷却过程中无相变,只要铸件结构设计合理,铝铸件的残留应力一般较小。2100433B
预应力是为了改善结构服役表现,在施工期间给结构预先施加的压应力。结构服役期间预加压应力可全部或部分抵消荷载导致的拉应力,避免结构破坏,常用于混凝土结构。在工程结构构件承受外荷载之前,对受拉模块中的钢筋...
预应力是为了改善结构服役表现,在施工期间给结构预先施加的压应力。结构服役期间预加压应力可全部或部分抵消荷载导致的拉应力,避免结构破坏,常用于混凝土结构。在工程结构构件承受外荷载之前,对受拉模块中的钢筋...
简单地说,剪力、弯矩等对应的是一个截面,而应力是构建上某一截面上某一点的受力。这点从其单位上看不难理解,应力的单位是N/m2所以意思是单位面积上的受力,包括平行于面的切(剪)应力、垂直于面的拉...
对3种不同的三相变四相电力变压器接线原理及结构特点进行比较并总结了各自的优缺点;建立了3种不同变压器的仿真模型并进行了在不同负荷条件下的仿真实验,比较了3种不同变压器在三相与四相交流电转换过程中的性能特点。研究表明:阻抗匹配三相变四相平衡变压器是利用绕组间的阻抗约束关系实现绕组间电磁关系平衡,绕组间无曲折连接,材料利用率较高,在三相与四相不对称转换过程中具有明显的优越性。
2011年12月20日,济南宏力太阳能有限公司(以下简称“宏力”)“携手同行,共赢天下”2011年核心经销商会议在环联假日酒店顺利召开。
在含有亚稳t- ZrO2的陶瓷中,当裂纹扩展进入含有t相晶粒的区域时,裂纹尖端周围的部分t相将在裂纹尖端应力场的作用下,发生t→m相变,形成一个相变过程区。在过程区内,一方面,由于裂纹扩展而产生新的裂纹表面,需要吸收一部分能量;另一方面,相变引起的体积膨胀效应也要消耗能量;同时相变的晶粒由于体积膨胀而对裂纹产生压应力,阻碍裂纹扩展。由此可见,应力诱导的这种组织转变消耗了外加应力,降低了裂纹尖端的应力强度因子,使得本可以继续扩展的裂纹因能量消耗造成驱动力减弱而终止扩展,从而提高了材料的断裂韧性。相变发生后,若要使裂纹继续扩展,必须提高外加应力水平。这样随应力水平的不断提高,裂纹会继续向前扩展。值得注意的是,在相变作用下,裂纹扩展的阻力会越来越大,扩展越来越困难。
相变的类型很多,根据相变的某种属性的特征可作粗线条的分类:根据热力学函数可分为一级相变、二级相变;根据对抗涨落的稳定性分为连续相变、非连续相变;根据新相生长时的控制环节,可分为扩散控制的相变和界面控制的相变;根据新相生成时原子迁移的特点,分为有扩散相变(散漫移动式相变)、无扩散相变(行列移动式相变)等。还有,由传质控制的相变,或由传热控制的相变(凝固)等。当然,有些相变不是这样截然划分所能概括的。矿物学家和陶瓷材料科学家在传统上将相变分为重构型相变和位移型相变,前者指相变时将原有的化学键拆开重新结合成新键而构成新晶体,后者则指相变时仅涉及结合键的长度和夹角大小的改变 。2100433B
在某些晶体中,应力和应变也有类似于铁电晶体的电极化和电场的关系那样复杂的现象。本征铁弹相变属于结构相变,自发应变是其唯一的序参量。
Gibbs相侓
, 其中F-多相平衡体系中的自由度数目(变量数) C-组分数, P-相数。或表示为:自由度数=总变量数-方程数。是Gibbs在1875-1878年推导的,是研究相平衡关系的普遍规律。
相图:是处于平衡状态下物质的组分、物相和外界条件相互关系的几何描述。原则上可以用成分和任何外界条件作为变量来绘制。
然而除温度、压力外的其它外界条件如电场、磁场等,一般情况下对于复相平衡不发生影响或影响很小,所以相图通常是以成分、温度和压力为变量描绘。对于固体材料最有实际意义的是成分对温度的相图。
从晶体学的观点,阐明母相与新相在晶体结构上的差异,即按结构变化对相变进行分类,是对用热力学关系进行分类的一个重要补充。结构相变可以分重构型、位移型和有序无序型三种基本类型。重构型相变中,大量化学键被破坏,在重新组合后,新相和母相之间在晶体学上没有明确的位向关系,而且原子的近邻的拓扑关系也产生显著的变化。这类相变经历了很高的势垒,相变潜热很大,过程缓慢。这类相变属于强一级相变。
当然,液-固相变和气-固相变也必然是重构型的。另外,还有位移型相变,在相变前后原子的近邻的拓扑关系仍保持不变,相变过程不涉及化学键的破坏,新相与母相之间存在明确的晶体学位向关系,它经历的势垒很小,相变潜热也很小甚至完全消失。
因此位移型相变可能是二级相变或弱一级相变。还有一种位移相变,它以晶格切变为主,也可能涉及晶胞内原子的相对位移,这就是人们通常说的马氏体相变,也是强一级相变。有序-无序相变在结构上往往涉及多组元固溶体中两种或多种原子在晶格点阵上排列的有序化。这可以是二级相变或弱一级相变。
相变动力学的任务在于具体地描述相变的微观机制,转变途径,转变速率及一些物理参量对它们的影响。由于在相变的进程中,系统要经历一系列非平衡态,所以要依靠物理动力学的理论和方法。
从理论上考虑,存在两条可能解决这个问题的途径。一是从非平衡态热力学的一般理论出发来解决问题,但由于相变过程牵扯的因素很多,尚未取得重要进展。二是针对不同相变系统的具体情况,对其原子过程作具体分析,对相变的各不同阶段分别找出适当的物理模型,然后借助于统计物理和热力学的一些基本概念,对这些模型进行半唯象的理论处理。
从动力学机制上,相变可以分为匀相转变和非匀相转变。前者没有明确的相界,相变是在整体中均匀进行,其相变过程中的涨落程度很小而空间范围很大。二级相变总是按匀相转变方式进行的。也有一些一级相变是按匀相转变方式进行的,例如失稳分解,即在原始均匀固溶体中形成长波长周期性变化的分解过程。
更常见的则是通过新相的成核生长来实现,相变中母相与新相共存。其相变过程中,涨落的程度很大而空间范围很小。在非匀相转变过程中,如果成核生长不涉及原子扩散,就被称为无扩散相变,反之为有扩散相变。