书 名 | 现代气动元件与系统 | 作 者 | 吴晓明等 |
---|---|---|---|
类 别 | 液压 | 出版社 | 化学工业出版社 |
出版时间 | 2014年7月 | 页 数 | 385 页 |
定 价 | 88 元 | 开 本 | 16 开 |
装 帧 | 平装 | ISBN | 9787122198679 |
丛书名 | 先进液压气动技术丛书 | 版 次 | 1版1次 |
第1章气动基础知识1
1.1气动技术历史发展与应用1
1.1.1气动技术的发展历史1
1.1.2气动技术的应用1
1.2气动技术的新发展3
1.2.1精确化3
1.2.2高速化4
1.2.3小型化4
1.2.4复合化5
1.2.5集成化5
1.2.6网络化6
1.2.7气动机器人和气动机械手6
1.2.8真空技术6
1.2.9节能、环保与绿色化发展6
1.3气动技术的特点7
1.3.1气动传动的优点8
1.3.2气动传动的缺点9
1.4气动技术的一些基本概念9
1.4.1常用压力单位9
1.4.2气阻及有效断面积9
1.4.3标准状态和标准体积13
1.5气动系统的基本组成13
1.6空气的物理性质15
1.7空气的热力学性质16
1.7.1理想气体的状态方程16
1.7.2热量、功18
1.7.3热力学过程18
1.8湿空气20
1.8.1湿空气对气动系统的影响20
1.8.2绝对湿度、相对湿度、露点20
1.8.3湿空气的密度22
1.8.4压缩空气22
1.9气体在管道中的流动特性24
1.9.1不可压缩流动24
1.9.2可压缩流动27
1.9.3变截面管道中的亚音速和超音速流动30
第2章气动执行元件34
2.1气缸的分类和特点34
2.2气缸的工作原理35
2.2.1普通气缸35
2.2.2组合气缸38
2.2.3特殊气缸40
2.2.4气爪(手指气缸)52
2.2.5摆动气缸53
2.3气缸的结构和常用计算方法56
2.3.1气缸的主要结构56
2.3.2缸筒与端盖的连接方法59
2.4常用气缸的计算60
2.4.1理论输出力60
2.4.2实际输出力60
2.4.3负载率α61
2.4.4缸径D61
2.4.5气缸行程的选择及活塞杆的长度限制和挠度63
2.4.6耗气量64
2.5气缸的性能65
2.5.1气缸的技术指标65
2.5.2压力位移特性66
2.5.3气缸的缓冲计算67
2.6气缸的选用、使用注意事项68
2.6.1气缸的选择要点68
2.6.2气缸使用注意事项68
2.7气马达69
2.7.1气马达的分类和特点69
2.7.2气马达的工作原理70
2.7.3气马达的特性73
2.8气动肌肉76
第3章气动控制阀78
3.1气动控制阀的分类78
3.2压力控制阀78
3.2.1减压阀79
3.2.2顺序阀85
3.2.3溢流阀(安全阀)85
3.3流量控制阀88
3.3.1流量控制原理88
3.3.2普通节流阀88
3.3.3单向节流阀90
3.3.4排气节流阀90
3.3.5节流阀的选择与使用90
3.4方向控制阀91
3.4.1方向控制阀的分类91
3.4.2气动控制阀的结构特性94
3.4.3方向控制阀的通口数和换向机能98
3.4.4电磁换向阀100
3.4.5气控换向阀105
3.4.6机械控制或人力控制方向换向阀110
3.4.7单向型方向阀113
3.5阀岛115
3.5.1带多针接口的阀岛116
3.5.2带现场总线的阀岛116
3.5.3可编程阀岛117
3.5.4模块式阀岛117
第4章气动能源及气动辅助元件119
4.1气源装置概述119
4.1.1气源系统的组成119
4.1.2气动系统对压缩空气质量的要求120
4.1.3空气压缩机120
4.1.4气动装置的耗气量及压气机站机组容量的选择124
4.2空气净化设备125
4.2.1后冷却器125
4.2.2主路过滤器、油水分离器及空气过滤器126
4.2.3干燥器129
4.2.4自动排水器132
4.3油雾器132
4.3.1油雾器的工作原理133
4.3.2油雾器的性能指标134
4.3.3油雾器的选择和使用注意事项134
4.4储气罐135
4.5消声器136
4.6压缩空气的输送管道分类和配管方式137
4.6.1气动系统的管路分类137
4.6.2主管路配管方式138
4.6.3配管注意事项139
4.7管路、管路连接件和附件140
4.7.1气动管路140
4.7.2管路的连接方式141
4.7.3管路接头141
4.7.4软管接头142
4.7.5使用注意事项144
4.7.6压缩空气主管道尺寸的计算144
4.7.7螺纹连接及管路连接的选择和评定标准144
第5章气动转换元件及比例阀146
5.1气动位置传感器146
5.1.1背压式传感器(气障式)146
5.1.2反射式传感器147
5.1.3遮断式传感器(气栅式传感器)148
5.1.4对冲式传感器149
5.1.5负压式传感器150
5.1.6涡流式探头151
5.1.7超声波探头151
5.2气动放大器152
5.2.1膜片式气动放大器152
5.2.2滑柱式气动放大器153
5.2.3膜片滑块式放大器154
5.2.4泄气型气动放大器154
5.2.5膜片滑阀式气动放大器154
5.2.6膜片式比例放大器154
5.2.7对冲式放大器155
5.3气动测量的应用157
5.3.1流速式气动测量原理157
5.3.2流量式气动测量原理157
5.3.3压力式气动测量原理158
5.3.4滑阀叠合量(搭接量)测量原理159
5.3.5气桥法测量线径161
5.3.6位置伺服系统测量工件尺寸161
5.3.7工件尺寸分选装置162
5.4气液转换器162
5.4.1气液转换器的结构162
5.4.2气液转换器的选择使用162
5.5电气转换器164
5.6气电转换器164
5.6.1干簧管式气电转换器165
5.6.2膜片式气电转换器165
5.7压力开关166
5.7.1高低压控制器166
5.7.2可调压力开关167
5.7.3多用途压力开关168
5.8气动变送器169
5.8.1差压变送器169
5.8.2比值器171
5.8.3压力变送器172
5.9气动显示器172
5.10气动比例阀173
5.10.1气动比例阀的分类173
5.10.2比例压力阀174
5.10.3比例流量阀179
5.10.4电/气比例阀的选择181
第6章真空元件182
6.1概述182
6.1.1真空度182
6.1.2真空发生系统的特点及其应用182
6.2真空泵184
6.3真空发生器185
6.3.1普通真空发生器工作原理185
6.3.2真空发生器的结构187
6.3.3带喷射开关的真空发生器187
6.3.4组合真空发生器187
6.3.5真空发生器的性能188
6.4真空吸盘189
6.4.1真空吸盘的结构189
6.4.2真空吸盘的吸力计算190
6.5真空用气阀191
6.5.1真空电磁阀191
6.5.2减压阀191
6.5.3换向阀193
6.5.4节流阀194
6.5.5单向阀194
6.5.6真空安全阀194
6.5.7真空顺序阀194
6.6真空开关196
6.7真空过滤器197
6.8真空元件的选定197
6.8.1吸盘的选定197
6.8.2真空发生器及真空切换阀的选定198
6.9使用注意事项200
第7章逻辑代数与逻辑控制系统202
7.1概述202
7.2逻辑代数202
7.2.1基本逻辑运算及其恒等式202
7.2.2基本定律203
7.2.3形式定律203
7.2.4逻辑运算规则和对偶定理204
7.3逻辑函数、真值表和基本逻辑门204
7.3.1逻辑函数204
7.3.2真值表204
7.3.3基本逻辑门205
7.4逻辑图206
7.5逻辑代数法设计逻辑线路206
7.5.1逻辑函数的标准形式(与或式和或与式)207
7.5.2逻辑函数的公式法化简208
7.5.3用真值表求逻辑函数的最简式209
7.6卡诺图法设计逻辑线路211
7.6.1用卡诺图化简逻辑函数211
7.6.2卡诺图法在逻辑线路设计中的应用213
第8章行程程序控制系统217
8.1概述217
8.2电气气动控制系统218
8.2.1是门电路(YES)218
8.2.2或门电路(OR)218
8.2.3与门电路(AND)219
8.2.4自保持电路219
8.2.5互锁电路219
8.2.6延时电路219
8.2.7直接控制和间接控制电路220
8.2.8计数电路220
8.3行程程序回路设计的最主要矛盾——障碍信号221
8.4XD状态线图223
8.4.1XD状态线图图框的画法223
8.4.2动作状态线(D线)的画法224
8.4.3信号线(X线)的画法224
8.5障碍信号的判别及其消除225
8.5.1障碍信号的判别225
8.5.2障碍信号的消除225
8.6串级法消除障碍229
8.7单往复回路的设计231
8.7.1XD状态线图232
8.7.2电气控制线路图235
8.7.3单控主控阀控制回路的设计方法236
8.7.4程序控制线图法240
8.8多往复回路的设计244
8.8.1多往复运动的特点和处理方法244
8.8.2多往复程序的信号动作状态线图的画法244
8.9选择行程控制回路的设计247
8.9.1自动选择程序247
8.9.2人工预选程序249
第9章气动伺服阀的一般分析252
9.1气动伺服阀的分类252
9.1.1气动滑阀252
9.1.2喷嘴挡板阀254
9.1.3射流管阀254
9.1.4开关阀255
9.2气动伺服阀压力流量特性的一般分析256
9.2.1基本假设256
9.2.2串联节流器的无量纲流量特性256
9.2.3两串联节流器流动状态的可能组合259
9.2.4气动伺服阀压力流量特性的一般方程260
9.3阀的压力特性、起始压力和压力灵敏度263
9.3.1压力特性263
9.3.2起始压力265
9.3.3压力灵敏度267
9.4阀的流量特性和流量放大系数269
9.5压力流量特性的线性化、阀系数270
9.6阀的耗气量、输出功率及效率272
9.7气缸腔内工作过程的动态分析273
9.8三通阀的分析275
9.8.1压力流量特性276
9.8.2阀系数278
9.8.3无量纲功率特性279
9.8.4气缸工作腔内动态过程的分析282
9.8.5三通阀控缸负载装置分析282
9.9电/气伺服阀284
9.9.1电/气伺服阀的分类284
9.9.2喷嘴挡板型伺服阀284
9.9.3直动式电反馈气动伺服阀285
第10章气动伺服系统288
10.1射流管式舵机的性能分析288
10.1.1系统介绍288
10.1.2系统的数学模型289
10.2脉宽调制差动缸气动伺服系统299
10.2.1脉宽调制系统简介299
10.2.2PWM线性化舵机系统301
10.2.3PWM线性化气动舵机的数学模型303
10.2.4系统载波频率的选择307
10.3双作用气缸PWM线性化系统分析309
10.3.1控制器及开关阀的数学模型310
10.3.2阀缸部分数学模型311
10.3.3起始压力的求法312
10.3.4线性化模型313
10.3.5PWM线性化的阀系数的求解315
第11章气动回路317
11.1概述317
11.2基本回路317
11.2.1供给回路317
11.2.2排出回路318
11.2.3气动换向回路319
11.2.4差动回路320
11.2.5气马达回路321
11.3功能回路321
11.3.1力控制回路321
11.3.2转矩控制回路322
11.3.3速度控制回路325
11.3.4间接控制328
11.3.5气液联动速度控制回路328
11.3.6变速回路329
11.3.7缓冲回路329
11.3.8位置(角度)控制回路331
11.4气动逻辑回路336
11.5应用回路337
11.5.1增压回路337
11.5.2冲压回路338
11.5.3往复回路339
11.5.4气缸同步动作回路341
11.5.5张力控制回路342
11.5.6平衡回路343
11.5.7节能回路344
11.5.8往复(振荡)回路345
11.5.9安全保护回路345
11.5.10真空回路351
11.5.11特殊回路353
11.6其他回路353
11.6.1气动放大器应用回路353
11.6.2自保持控制回路353
11.6.3中途停止回路353
第12章气动系统的设计355
12.1设计概述355
12.2气动断续控制系统的设计358
12.2.1气动断续控制系统的设计步骤358
12.2.2设计举例362
12.3电气气动程序回路设计371
12.3.1用直觉法(经验法)设计电气回路图371
12.3.2用串级法设计电气回路图376
参考文献385
《现代气动元件与系统》是“先进液压气动技术丛书”之一。本书侧重从工程应用出发,系统地讲述了气压传动与控制技术中各类元件的工作原理、结构特征、性能特点、使用注意事项和故障排除方法,讨论了逻辑控制系统、行程程序控制系统、气动伺服系统的分析、研究和设计方法。为了便于学习和选用,本书还给出了气压控制的一些基本回路、常用回路和电气控制电路。
三联过滤,气缸,气管,气管接头,电磁阀,气控阀,脚阀手阀,缓冲器,节流阀,调压器
一般常用的有气缸,电磁阀,调压阀,气动马达,过滤器,接头,油水分离器等等,每一种元件又包含非常多的类别。学习气动第一步是先看懂气动原理图。原理图明白了,再结合实际了解气动元件的功能,特性。如果要设计气...
我知道,香港SMC网站。 里面能下载http://www.smchk.com.hk/smc_website/index_sc.htm
奉化市永兴气动元件有限公司是专业生产各类气动元件的企业,公司从事生产气动控制基础元件——电磁先导换向阀,主要产品有:气动执行元件、控制元件、气源处理元件、辅助元件以及气动成套系统,广泛应用于机械、冶金、食品、包装、纺织、电子等行业。技术参数产品简介二位五通电控换向阀,分为单电控(K25HK-□)和双电控(K25HD2-□)两种,是气动系统中用来改变气流方向的基本元件。单电控由电讯号使主阀切换,断电后自动复位;双电控是具有记忆性的方向控制阀,电讯号使主阀换向,此电讯号消失后,只有接
第十一章气动控制元件..
《液压气动元件与系统使用及故障维修》基础与提高并重,选材与叙述紧密结合工程实际和当代液压气动技术的发展及应用状况,以体现其实用性、系统性、先进性和多样性的特点。全书叙述和表达深入浅出,图文并茂,案例丰富,新颖翔实,便于读者自学及触类旁通。《液压气动元件与系统使用及故障维修》既可作为各行业液压气动技术的一线工作人员的短期培训和上岗培训教材及自学读本,也可供科研院所和工矿企业技术人员及操作维护人员参阅,同时可作为本科院校及高职高专院校相关专业及方向的教学参考书或实训教材,并可供液压气动技术爱好者学习参阅。
气动技术应用面的扩大是气动工业发展的标志。气动元件的应用主要为两个方面:维修和配套。过去国产气动元件的销售要用于维修,直接为主要配套的销售份额逐年增加。国产气动元件的应用,从价值数千万元的冶金设备到只有1~2百元的椅子。铁道扳岔、机车轮轨润滑、列车的煞车、街道清扫、特种车间内的起吊设备、军事指挥车等都用上了专门开发的国产气动元件。这说明气动技术已“渗透”到各行各业,并且正在日益扩大。
我国的气动工业虽然达到了一定规模与技术水平,但是与国际先进水平相比,差距甚大。我国气动产品产值只占世界总产值的1.3%,仅为美国的1/21,日本的1/15,德国的1/8。这与10多亿人口的大国很不相称。从品种上看,日本一家公司有6500个品种,我国只有它的1/5。产品性能和质量水平的差距也很大。
由于气动技术越来越多地应用于各行业的自动装配和自动加工小件、特殊物品的设备上,原有传统的气动元件性能正在不断提高,同时陆续开发出适应市场要求的新产品,使气动元件的品种日益增加,其发展趋势主要有以下几个方面:
体积更小,重量更轻,功耗更低.在电子元件、药品等制造行业中,由于被加工件体积很小,势必限制了气动元件的尺寸,小型化、轻型化是气动元件的第一个发展方向。国外已开发了仅大拇指大小、有效截面积为0.2mm2的超小型电磁阀。能开发出外形尺寸小而流量较大的元件更为理想。为此,相同外形尺寸的阀,流量已提高2~3.3倍。有一种系列的小型电磁阀,其阀体宽仅10mm,有效面积可达5mm2;宽15mm,有效面积达10mm2等。
国外电磁阀的功耗已达0.5W,还将进一步降低,以适应与微电子相结合。
气源处理组合件,国内外大多采用了积木式的砌块结构,不仅尺寸紧凑,而且结合、维修都很方便。
执行元件的定位精度提高,刚度增加,活塞杆不回转,使用更方便.为了提高气缸的定位精度,附带制动机构和伺服系统的气缸应用越来越普遍。带伺服系统的气缸,即使供气压力和所负的载荷变化,仍可获得±0.1mm的定位精度。
在国际展览会上,各种异型截面缸筒和活塞杆的气缸甚多,这类气缸由于活塞杆不会回转,应用在主机上时,无须附加导向装置即可保持一定精度。此外还开发了不少带各种导向机构的气缸和气缸滑动组件,例如具有两根导向杆的气缸、双活塞杆双缸筒气缸等。
气缸筒外形已不限于圆形、而是方形、米字形或其它形状,在型材上开了导向槽、传感器和开关的安装槽等,让用户安装使用更方便。
多功能化,复合化.为了方便用户,适应市场的需要开发了各种由多只气动元件组合并配有控制装置的小型气动系统。如用于移动小件物品的组件,是将带导向器的两只气缸分别按X轴和Z轴组合而成。该组件可搬动3kg重物,配有电磁阀、程控器,结构紧凑,占有空间小,行程可调整。又如一种上、下料模块,有七种不同功能的模块形式,能完成精密装配线上的上、下料作业,可按作业内容将不同模块任意组合。还有一种机械手是由外形小并能改变摆动角度的摆动气缸与夹头的组合件,夹头部位有若干种夹头可选配。
与电子技术结合,大量使用传感器,气动元件智能化.带开关的气缸国内已普遍使用,开关体积将更小,性能更高,可嵌入气缸缸体;有些还带双色显示,可显示出位置误差,使系统更可靠。用传感器代替流量计、压力表、能自动控制压缩空气的流量、压力,可以节能并保证使用装置正常运行。气动伺服定位系统已有产品进入市场。该系统采用三位五通气动伺服阀,将预定的定位目标与位置传感器的检测数据进行比较,实施负反馈控制。气缸最大速度达2m/s、行程300mm时,系统定位精度±0.1mm。日本试制成功一种新型智能电磁阀,这种阀配带有传感器的逻辑回路,是气动元件与光电子技术结合的产物。它能直接接受传感器的信号,当信号满足指定条件时,不必通过外部控制器,即可自行完成动作,达到控制目的。它已经应用在物体的传送带上,能识别搬运物体的大小,使大件直接下送,小件分流。
更高的安全性和可靠性.从气动技术国际标准可知,标准不仅提出了互换性要求,并且强调了安全性。
气动元件的许多使用场合,如轧钢机、纺织流水线等,在工作时间内不能因为气动元件的质量问题而中断,否则会造成巨大损失,因此气动元件的工作可靠性显得非常重要。在航海轮船上,使用的气动元件不少,但能打进这个领域的气动元件厂不多,原因是其对气动元件的可靠性要求特别高,必须通过有关国际机械的认证。
向高速、高频、高响应、高寿命方向发展.为了提高生产设备的生产效率,提高执行元件的工作速度势在必行。我国的气缸工作速度一般在0.5m/s以下。根据日本专家预测,五年以后大部分的气缸工作速度将提高到1~2m/s,有的要求达5m/s。气缸工作速度的提高,不仅要求气缸的质量提高,而且结构上也要相应改进,例如要配置油压吸震器以增加缓冲效果等。电磁阀的响应时间将小于10ms,寿命提高到5000万次以上。美国有一种间隙密封的阀,由于阀芯悬浮在阀体内,相互不接触,在无需润滑下,寿命高达2亿次。
普遍使用无油润滑技术,满足某些特殊要求.由于环境污染以及电子、医疗、食品等行业的要求,环境中不允许有油,因此无油润滑是气动元件的发展趋向,同时无油润滑可使系统简化。欧洲市场上油雾器已属淘汰的产品,普遍做到了无油润滑。此外,为了满足某些
特殊要求,除臭、除菌和精密过滤器正在不断开发,过滤精度已达0.1~0.3μm,过滤效率已达99.9999%。
以聚四氟乙烯为主体的复合材料制造的气动密封件能耐热(260℃),耐寒(-55℃)和耐磨,其使用场合越来越多。
为了提高质量,真空压铸、氢氧爆炸去毛刺等新技术正在气动元件制造中逐步推广。
便于保养、维修和使用.国外正在研究使用传感器实现气动元件及系统具有故障预报和自诊断功能。
从上述的气动技术发展方向可知,在气动产品的开发上我们有许多工作可做。任何一个气动元件厂,即使其规模不大,只要突破一个方面,并保持技术领先,就可以在市场上占一席之地,在激烈的竞争中获得生存和发展。
救生抛投器 的主要部件就是一个内置气缸带折叠枪托的发射枪体,是气动产品的典型应用。在水上救生和陆用救援发挥了很大的作用。
气动元件的市场走向 气动元件发展方向:更高的安全性和可靠性。气动技术国际标准可知,标准不仅提出了互换性要求,并且强调了安全性。管接头、气源处理外壳等耐压试验的压力提高到使用压力的4~5倍,耐压时间增加到5~15min,还要在高、低温度下进行试验。如果贯彻这些国际标准,国内的缸筒、端盖、气源处理铸件和管接头等都难达到标准要求。除耐压试验处,结构上也作了某些规定,如气源处理的透明壳外部规定要加金属防护罩。
一套气动元件设备如果维护不得当,那么就会减少设备的寿命,严重的话发生故障所带来的安全隐患也是不可小觑的,那么如何维护好一套气动元件设备呢?
1、保证正确之代供气系统:进气压力于工具入口处(非空压机之出气压力)一般为90PSIG(6.2Kg/cm^2),过高、过低均有损工具之性能及寿命。进气必须含有充分润滑油,以便工具内气动马达得到充分润滑(可置一白纸于工具排气处检视是否有油渍,正常为有油渍现象)。 进气必须尽不含水份,若庄缩空气未经空气干燥机是不恰当的。
2、不可任意拆除工具的零件后而操作,除了会影响操作者的安全关会致使工具损坏。
3、若工具略有故障或经使用不能达到原有功能时,不可再继续使用,要立即检查。
4、使用各式工具,务必遵照各种安全规定及使用说明操作。
5、要选用适当的工具工作,工具过大容易造成工作伤害,工具过小容易致使工具损害。
6、定期(约每周一次)检查、保养工具,添加黄油于轴承等转动部位,添加机油于气动马达部位。