蓄电池管理系统

蓄电池管理系统(BATTERY MANAGEMENT SYSTEM),在派司德投入大量精力并首先研发出电动车电池管理系统(BMS),是电池与用户之间的纽带,主要对象是二次电池。

蓄电池管理系统基本信息

中文名称 蓄电池管理系统 外文名称 BATTERY MANAGEMENT SYSTEM
作用 电池与用户之间的纽带 主要对象 二次电池

蓄电池管理系统造价信息

市场价 信息价 询价
材料名称 规格/型号 市场价
(除税)
工程建议价
(除税)
行情 品牌 单位 税率 供应商 报价日期
电源管理系统 1.名称:电源管理系统 2.类别:"交钥匙"配置: 国产优质产品,源输出不少于每台主设备均连接源接口 查看价格 查看价格

ITC

13% 广州保伦电子科技有限公司
壁挂式联动直流供单元 24V10A 查看价格 查看价格

13% 青鸟消防股份有限公司(湖州市厂商期刊)
源供单元 PSU 查看价格 查看价格

特灵

13% 深圳市恒基消防设备有限公司
源供单元 PSU 查看价格 查看价格

特灵

13% 深圳市恒基消防设备有限公司
联动直流供单元 LD-S320D(10A) 壁挂式 查看价格 查看价格

13% 河北北大青鸟环宇消防设备有限公司中山办事处
联动直流供 XY1000GD/30A配置说明:入柜式DC24V30A; 查看价格 查看价格

尼特

13% 广州辰安消防设施工程有限公司
壁挂式源联动直流供单元 品种:联动供单元(主备一体式);型号:24V10A;类型:壁挂式;工作流(A):10;额定压(V):24;产品说明:主备一体,24 查看价格 查看价格

北大青鸟

13% 合肥青鸟消防设备有限公司
24V供单元 TA1260S 查看价格 查看价格

迪士普

13% 广州市迪士普科技有限公司
材料名称 规格/型号 除税
信息价
含税
信息价
行情 品牌 单位 税率 地区/时间
蓄电池 l2V-l2AH 查看价格 查看价格

湛江市2022年3季度信息价
蓄电池 l2V-24AH 查看价格 查看价格

湛江市2022年3季度信息价
蓄电池 l2V-l2AH 查看价格 查看价格

湛江市2021年4季度信息价
蓄电池 l2V-24AH 查看价格 查看价格

湛江市2021年3季度信息价
蓄电池 l2V-l2AH 查看价格 查看价格

湛江市2021年2季度信息价
蓄电池 l2V-24AH 查看价格 查看价格

湛江市2020年3季度信息价
蓄电池 l2V-l2AH 查看价格 查看价格

湛江市2020年2季度信息价
蓄电池 l2V-24AH 查看价格 查看价格

湛江市2020年2季度信息价
材料名称 规格/需求量 报价数 最新报价
(元)
供应商 报价地区 最新报价时间
蓄电池监测管理系统 S800BM系列1.名称:蓄电池监测管理系统2.类别规格:分布式安装,传感器与蓄电池一一对应;测量每个蓄电池的内阻、压、容量和温度;测量范围 压:1.5V - 15V;温度:-10℃ - 70|1台 1 查看价格 杭州海康威视数字技术股份有限公司成都分公司 四川  成都市 2019-12-30
电池管理系统信息交互 详见图纸|1台 1 查看价格 深圳市润诚达电力科技有限公司 广东   2022-11-22
蓄电池 蓄电池|40节 1 查看价格 深圳市稳定不间断电源有限公司 广东  深圳市 2016-01-11
蓄电池 蓄电池 汤浅|1节 1 查看价格 深圳市艾佩斯不间断电源有限公司 广东  深圳市 2014-10-23
蓄电池 12V100AH蓄电池|16个 3 查看价格 广州市熹尚科技设备有限公司 广东  佛山市 2019-09-20
蓄电池 12V7A蓄电池|15个 3 查看价格 深圳市杰智通科技有限公司 广东  深圳市 2019-07-09
蓄电池 型号:蓄电池品牌:松下蓄电池参数:.12V 120AH|6台 3 查看价格 智宇科技有限公司 广东   2022-07-11
蓄电池集中监测管理系统平台软件 1.名称 :蓄电池集中监测管理系统平台软件2.参数:采用人工智能、数据挖掘和嵌入式技术相结合,实时对蓄电池压、流、温度等参数进行监测、分析,以监测蓄电池组工作状态,保证机房设备的运行安全.|2套 1 查看价格 全国  

蓄电池管理系统常见问题

蓄电池管理系统文献

直流不间断电源(DC UPS)蓄电池管理系统 直流不间断电源(DC UPS)蓄电池管理系统

格式:pdf

大小:546KB

页数: 4页

评分: 4.5

本文介绍了一种实用的直流不间断电源(DC UPS)蓄电池管理系统。从硬件组成、各单元的工作原理入手,介绍了蓄电池的管理和维护方法,着重介绍通过改善单体蓄电池的一致性来延长电池组的使用寿命。

立即下载
蓄电池内阻测量的电池管理系统的设计 蓄电池内阻测量的电池管理系统的设计

格式:pdf

大小:546KB

页数: 4页

评分: 4.7

蓄电池内阻测量是电池管理系统的一个重要功能,电池内阻值是衡量电池性能的一个重要指标。利用交流注入法实现蓄电池内阻的在线测量,利用锁相放大器AD630处理小信号电路,提高了测量精度,测量误差小于10%;通过RS485实现数据交换,便于集成于其他系统,满足用户多方面的需求;并设计了电源回路,测量系统的电源可由被测量电池提供,也可由外部电源提供。

立即下载

电池的正极板软化

随着充放反复进行,二氧化铅颗粒之间的结合也松弛、软化,从板栅上脱落下来。另外极板的制造、装配的松紧和充方电条件等一系列因素,都对正极活性物质的软化、脱落有影响。电池容量越小,放电深度越深,正极板软化也越严重,导致电池容量下降越快,形成了恶性循环。这样,电池的放电深度需要严格控制。实现这个控制的是靠基站开关电源的蓄电池管理系统中二次下电功能来完成的。即当交流电源停电后电池放电,在电池电压低于一次下电电压后,切断耗电量较大的次要负载,以维持重要负载较长的工作时间;在低于二次下电电压后切断所有负载,保护电池防止过放电。对于蓄电池来说,二次下电的保护电压应该是电池放电终止电压,而在通信电源系统中,一般都将蓄电池组的下电电压保护点设置在43.2V,单体电池的终止电压约为1.8V。所以当基站蓄电池使用3年后,就有必要将蓄电池组的二次下电电压保护值提高至45.5V左右,尽量减少电池的正极板软化造成电池容量下降.

.电池的正极板腐蚀

正极板栅在蓄电池的充电过程中都会被氧化成硫酸铅和二氧化铅,使得板栅线性长大变形,最后导致丧失支撑活性物质的作用而使电池失效。 而过充电会严重加速正极板腐蚀。我们一般以为不会产生过充电状态。实际上,基站的浮充电压如果跟不上环境温度的上升而进行下降的补偿,过充电就产生了。如基站的空调不够或者损坏,电池的过充电也会产生。这样电池的正极板板栅在不同的使用条件下会有不同的腐蚀速度。

在防止电池的正极板腐蚀、变形问题上,要注意不同厂家品牌电池的浮充电压(2.23~2.25V)的选择,有条件的需要打开电池的浮充充电的温度补偿系数(3mv/cell/℃)。

.电池的失水

电池充电达到单体电池2.35V(25℃)以后,就会进入正极板大量析氧状态,对于密封电池来说,负极板具备了氧复合能力。如果充电电流比较大,负极板的氧复合反应跟不上析氧的速度,气体会顶开排气阀而形成失水。如果充电电压达到2.42V(25℃),电池的负极板会析氢,而氢气不能够类似氧循环那样被正极板吸收,只能够增加电池气室的气压,最后会被排出气室而形成失水。

.电池的热失控

对于少维护或免维护电池来说,对电池的充电电压都有限制,但在实际使用过程中,由于设备的调压装置可能失控,使得充电电压过高,从而充电电流过大,产生的热将使电池电解液温度升高,导致电池内阻下降;内阻的下降又加强了充电电流。电池温升和充电电流过大的互相加强,最终不可控制,使电池变形、开裂而失效。 尽管电池热失控现象发生的不多,但是一旦发生热失控,电池的寿命会迅速提前结束。

电池的不均衡

新电池的容量、开路电压和内阻应该进行严格的配组。所以新电池一般离散性比较小。随着电池使用,电池在制造工艺中必然存在的微小差距会被扩大。从电池的寿命容量曲线看,电池的容量总体上是逐步加速的。凡是电池出现不均衡,总是加速的。对于电池的不均衡,唯一的充电方式是采用“均充”,其愿望是对充满电的电池实现增加电池的副反应,把欠充电的电池充满电。但是,实际上,这个作用不足以恢复电池的均衡。比较有效的方法还是采用单体电池的补足充电。可是一般基站和修复队伍都不具备这个设备条件。

电池的负极板硫化

电池的负极板不可逆硫酸铅盐化,简称硫化。是最严重的(约占80%以上的因素)无人基站后备蓄电池失效模式,我们在下一部分专门探讨。

电动汽车的发展包括电动汽车和能源供给系统的研究和开发。其中能源供给系统指充 电基础设施,即供电、充电和蓄电池管理系统及能源供给模式。电动汽车充电站(桩)作为电动汽车运行的能量补给站,是发展电动汽车商业化所必备的重要配套基础设施。充电站的建设将直接影响电动汽车产业的发展。要推动电动汽车市场的发展,充电站(桩)的建设速度必须与电动汽车推广相匹配。

电池的正极板软化

随着充放反复进行,二氧化铅颗粒之间的结合也松弛、软化,从板栅上脱落下来。另外极板的制造、装配的松紧和充方电条件等一系列因素,都对正极活性物质的软化、脱落有影响。电池容量越小,放电深度越深,正极板软化也越严重,导致电池容量下降越快,形成了恶性循环。这样,电池的放电深度需要严格控制。实现这个控制的是靠基站开关电源的蓄电池管理系统中二次下电功能来完成的。即当交流电源停电后电池放电,在电池电压低于一次下电电压后,切断耗电量较大的次要负载,以维持重要负载较长的工作时间;在低于二次下电电压后切断所有负载,保护电池防止过放电。对于蓄电池来说,二次下电的保护电压应该是电池放电终止电压,而在通信电源系统中,一般都将蓄电池组的下电电压保护点设置在43.2V,单体电池的终止电压约为1.8V。所以当基站蓄电池使用3年后,就有必要将蓄电池组的二次下电电压保护值提高至45.5V左右,尽量减少电池的正极板软化造成电池容量下降.

.电池的正极板腐蚀

正极板栅在蓄电池的充电过程中都会被氧化成硫酸铅和二氧化铅,使得板栅线性长大变形,最后导致丧失支撑活性物质的作用而使电池失效。 而过充电会严重加速正极板腐蚀。我们一般以为不会产生过充电状态。实际上,基站的浮充电压如果跟不上环境温度的上升而进行下降的补偿,过充电就产生了。如基站的空调不够或者损坏,电池的过充电也会产生。这样电池的正极板板栅在不同的使用条件下会有不同的腐蚀速度。

在防止电池的正极板腐蚀、变形问题上,要注意不同厂家品牌电池的浮充电压(2.23~2.25V)的选择,有条件的需要打开电池的浮充充电的温度补偿系数(3mv/cell/℃)。

.电池的失水

电池充电达到单体电池2.35V(25℃)以后,就会进入正极板大量析氧状态,对于密封电池来说,负极板具备了氧复合能力。如果充电电流比较大,负极板的氧复合反应跟不上析氧的速度,气体会顶开排气阀而形成失水。如果充电电压达到2.42V(25℃),电池的负极板会析氢,而氢气不能够类似氧循环那样被正极板吸收,只能够增加电池气室的气压,最后会被排出气室而形成失水。

.电池的热失控

对于少维护或免维护电池来说,对电池的充电电压都有限制,但在实际使用过程中,由于设备的调压装置可能失控,使得充电电压过高,从而充电电流过大,产生的热将使电池电解液温度升高,导致电池内阻下降;内阻的下降又加强了充电电流。电池温升和充电电流过大的互相加强,最终不可控制,使电池变形、开裂而失效。 尽管电池热失控现象发生的不多,但是一旦发生热失控,电池的寿命会迅速提前结束。

电池的不均衡

新电池的容量、开路电压和内阻应该进行严格的配组。所以新电池一般离散性比较小。随着电池使用,电池在制造工艺中必然存在的微小差距会被扩大。从电池的寿命容量曲线看,电池的容量总体上是逐步加速的。凡是电池出现不均衡,总是加速的。对于电池的不均衡,目前唯一的充电方式是采用"均充",其愿望是对充满电的电池实现增加电池的副反应,把欠充电的电池充满电。但是,实际上,这个作用不足以恢复电池的均衡。目前比较有效的方法还是采用单体电池的补足充电。可是一般基站和修复队伍都不具备这个设备条件。

电池的负极板硫化

电池的负极板不可逆硫酸铅盐化,简称硫化。是最严重的(约占80%以上的因素)无人基站后备蓄电池失效模式,我们在下一部分专门探讨。

蓄电池管理系统相关推荐
  • 相关百科
  • 相关知识
  • 相关专栏