中文名 | 温压场对称系统 | 性 质 | 对称系统 |
---|---|---|---|
属 性 | 温压场 | 暖性高压 | 高压中心区为暖区 |
低压中心区为冷区,四周为暖区,等温线与等压线基本平行,冷中心与低压中心基本重合的气压系统。因为冷区单位气压高度差小于周围暖区,因而冷低压的等压面凹陷程度随高度增加而增大,即冷低压的强度愈向高空愈增强。
低压中心为暖区,暖中心与低压中心基本重合的气压系统。由于暖区的单位气压高度差大于周围冷区,所以低压等压面凹陷程度随高度升高而逐渐减小,最后趋于消失。如果温压场结构不变,随高度继续增加暖低压就会变成暖高压系统。
由于温压场配置重合,所以该系统中水平面上等温线与等压线是基本平行的。系统中包括暖性高压、冷性低压和暖性低压、冷性高压,图4·13。
柱塞泵密封性好,能提供较大的压力,一般被用在高压25-40MPa场合。像齿轮泵,断面泄漏严重,排量小,限制了他输出流量,也限制了他输出压力的提高。轴向柱塞泵内部的配合都是采用的面接触,缸体与配流盘,滑...
可以镜像。
我昨天投标的项目好像和你特像
高压中心区为暖区,四周为冷区,等压线和等温线基本平行,暖中心与高压中心基本重合的气压系统。由于暖区单位气压高度差大于周围冷区,因而高压的等压面凸起程度随高度增加不断增大,即高压的强度愈向高空愈增强。
高压中心为冷区,冷中心与高压中心基本重合的气压系统。因为冷区单位气压高度差小于周围暖区,因而高压等压面的凸起程度随高度升高而不断减小,最后趋于消失。若温压场结构不变,随高度继续增加,冷高压会变成冷低压系统。
由上可见,暖性高压和冷性低压系统不仅存在于对流层低层,还可伸展到对流层高层,而且其气压强度随高度增加逐渐增强,这类系统称为深厚系统。而暖性低压和冷性高压系统主要存在于对流层低空,称浅薄系统。2100433B
真空预压场地形状系数的定义——本文在以往学者对真空预压场地形状系数的定义公式基础上,分析了真空预压场地形状系数的物理意义,提出了一个新的定义方法,并应用于若干工程实例的分析,结果表明,新定义的场地形状系数物理意义明确,更适合于实际应用,可定性...
通过采用静态破碎技术进行岩石地段的基坑开挖实例,用静态破碎配合机械破碎流水作业施工方法解决在燃气场站周边不能爆破基坑岩石的问题。该技术无震动及噪声污染、安全环保,效率高,虽成本较高,但对于特殊案例可借鉴参考。
静力学方程
可以改写为
由此式可见:气压随高度的减小与温度的高度有关。温度愈高,气压随高度减小愈慢,这就是说,在暖空气中气压随高度的减小比在冷空气中慢。因此气压系统的垂直结构与温度分布有关。
深厚而对称的高压和低压系统是常见的高低压系统之一,可根据以上原理讨论其垂直结构。
深厚而对称的高压和低压系统是指对称的冷低压和暖高压,是温度场的冷(暖)中心与气压场的低(高)中心基本重合在一起的温压场对称系统。由于冷低压中心的温度低,所以低压中心的气压随高度而降低的程度较四周气压更加剧烈,因此,低压中心附近的气压越到高空比四周的气压降低得越多,即冷低压越到高空越强。同样,暖高压中心温度高,所以高压中心的气压随高度降低的较四周慢,因此暖高压越到高空也越强。
冷低压和暖高压都是很深厚的系统,从地面到500hPa以上的等压面图上都保持为闭合的高压和低压系统。图1位冷低压和暖高压在剖面图上的情形,从图中可以看出等压面的坡度随高度是增大的,说明冷低压和暖高压在剖面图上是随高度变强的。
气压场(pressure field)气压的分布状况,在平面图上用等压线表示之,在空间上是用几层平面气压场表示之。据此可以洞察到天气系统的空同结构及其物理特征,用等高面和等压面图表示气压场;气压场的基本类型有低气压、高气压、高压脊、低压槽、鞍型场等;气压的空间结构有温压场对称型和温压场不对称型。
气压系统存在于三维空间中,在静力平衡下,气压随高度的升高而降低。气压降低的快慢与温度的高低有关,温度越高,气压随高度的升高而减小越慢,相差单位气压值的气层越厚。也就是说,在暖空气中气压随高度的升高而减小的速度比在冷空气中慢。因此气压系统的空间结构往往由于与温度场的不同配置状况而有差异。当温度场与气压场配置重合(温度场的高温、低温中心分别与气压扬的高压、低压中心相重合)时,称该气压系统为温压场对称系统;当温度场与气压场的配置不重合时,则称温压场不对称系统。
温压场对称系统
由于温压场中心重合配置,所以该系统中各水平面上等温线与等压线基本平行。包括暖性高压、冷性低压和暖性低压、冷性高压。
(1)暖性高压。高压中心区为暖区,四周为冷区,等压线和等温线基本平行,暖中心与高压中心基本重合的气压系统为暖性高压,如夏季太平洋上的副热带高压。由于暖高压中心的气压随高度升高而降低较周围气压降低得慢,因而暖高压等压面凸起程度随高度增加不断增大,高压的强度越向高空越强。
(2)冷性低压。低压中心区为冷区,四周为暖区,等温线与等压线基本平行,冷中心与低压中心基本重合的气压系统为冷性高压,如中国东北冷涡。由于冷低压中心的气压随高度升高而降低较四周气压降低得更快,因而冷低压等压面凹陷程度随高度增加而增大,冷低压的强度越向高空越强。
(3)暖性低压。低压中心为暖区,暖中心与低压中心基本重合的气压系统为暖性低压,如台风。由于暖低压中心温度高、中心气压随高度升高而降低较四周降低得慢,所以低压等压面凹陷程度随高度升高而逐渐减小,最后趋于消失。如果温压场结构不变,暖低压就会随高度继续增加变成暖高压系统。
(4)冷性高压。高压中心为冷区,冷中心与高压中心基本重合的气压系统为冷性高压,如蒙古高压。由于冷高压中心温度低,中心气压随高度升高而降低较四周降低得更快,因而高压等压面的凸起程度随高度升高而不断减小,最后趋于消失。若温压场结构不变,冷高压会随高度继续增加变成冷低压系统。
由上述分析可知,暖性高压和冷性低压系统不仅存在于对流层低层,还可伸展到对流层高层,而且其气压强度随高度增加逐渐增强,这类系统称为深厚系统。而暖性低压和冷性高压系统主要存在于对流层低空,称浅薄系统。
温压场不对称系统
地面图上冷暖中心和高低气压中心不重合的温压系统称温压场不对称系统。由于温压场的不对称性,导致气压系统的垂直结构出现不对称性。高气压中,暖区一侧气压随高度升高而降低比冷区一侧慢,所以高压中心越到高空越向暖区靠近,即高压轴线随高度升高不断向暖区倾斜。同理,低压轴线随高度升高不断向冷区倾斜。北半球中高纬度的冷空气多从西北方向移来,表现为低压的西北侧温度比较低,而高压的西南侧比较温暖,因而低压中心轴线常向西北方向倾斜,高压中心轴线多向西南方向倾斜。