中文名 | 土质边坡失稳破坏的多尺度数值模拟及试验验证 | 依托单位 | 浙江大学 |
---|---|---|---|
项目负责人 | 凌道盛 | 项目类别 | 面上项目 |
土质边坡的多尺度(微观颗粒、细观单元体和宏观坡体)耦合效应是导致土坡失稳破坏呈现突发性、不确定性等复杂特性的根本原因,基于单元体应力应变关系的常规有限元法不能很好反映边坡渐进累积破坏的本质。课题基于微观颗粒模拟室内试验中剪切带的形成和发展,分析剪切带内土颗粒受力和变位的分布规律,建立剪切带宽度、倾角和颗粒微观结构量间的关系以及剪切带内土单元体的广义应力应变关系。在此基础上,针对粒状土质边坡的失稳破坏特点,基于微观土颗粒分析剪切带内土体变形,基于细观土单元应力应变关系分析剪切带外土体变形,提出精细模拟粒状土质边坡渐进累积破坏的多尺度数值模拟理论和求解技术。利用多尺度分析方法研究造成粒状土坡失稳破坏突发性的内在机理,分析微观缺陷对粒状土坡失稳破坏的影响规律,并通过大型模型试验验证。研究成果不仅从微观尺度加深对边坡失稳内在机理的认识,而且有助于推动岩土工程数值模拟向多尺度方向发展。 2100433B
批准号 |
50778163 |
项目名称 |
土质边坡失稳破坏的多尺度数值模拟及试验验证 |
项目类别 |
面上项目 |
申请代码 |
E0807 |
项目负责人 |
凌道盛 |
负责人职称 |
教授 |
依托单位 |
浙江大学 |
研究期限 |
2008-01-01 至 2010-12-31 |
支持经费 |
32(万元) |
泥岩边坡随风化程度不同而决定是土质还是岩质边坡,全强风化的为土质边坡,弱微风化的可以看做是石质边坡。但泥岩属于开挖后容易风化的岩石,对于微弱风化的泥岩边坡开挖后如果得到及时的封闭防护,可以以岩质边坡坡...
边坡失稳往往是在外界不利因素影响下触发和加剧的。这些外界因素往往导致土体剪应力的增加或抗剪强度的降低,使土体中剪应力大于土的抗剪强度而造成滑动失稳。
影响了边坡的植物生长,很不环保,目前正逐渐退出边坡支护的方案选择 ——源自 中国地质大学(武汉) 工程地质实习课程-18.边坡加固
土质边坡破坏过程的数值模拟分析——利用基于离心试验原理的RFPA 离心加载法对土质边坡的稳定性进行了数值模拟,无需假定破坏面的位置和形状,就可以直观地得到坡体的滑移破坏面, 同时求得相应的安全系数。通过对支护前后边坡的破裂模式、安全系数的比较,表明...
土质边坡失稳的突变性分析——对土质边坡圆弧滑动稳定性问题,采用应力软化模型,由系统能量导出极限平衡方程,运用突变理论方法对土坡失稳进行了分析.分析表明,边坡参数变化为某一临界值时,土坡的滑动位移突然增大,发生突变失稳现象,由刚体极限平衡稳定理...
本项目以解决重大工程的动力灾变研究计划中提出的核心科学问题重大工程动力灾变的关键效应中的材料、构件和结构的非线性动力效应科学问题为研究目标,采用结构缩尺试样的损伤实验研究、结构多尺度模拟和数值仿真分析等研究手段,通过重大工程结构在灾害载荷下损伤破坏过程的非线性动力效应的多尺度模拟与分析,揭示其中的非线性动力效应的主要规律及其对结构破坏过程的影响、结构损伤破坏机理和失效路径。具体内容包括:研究主要工程材料在复杂受力条件下损伤多尺度演化特征并建立其本构描述;研究灾变环境下构件和结构在不同尺度内的动力响应特征和损伤失效行为;发展重大工程结构尤其是大跨结构考虑局部损伤演化的适度精细的多尺度建模和模型修正方法;发展重大工程结构损伤多尺度分析方法和基于大型非线性分析软件及二次开发的多尺度计算技术和实施策略;为发展灾害环境下结构多尺度力学、建立重大工程动力灾害模拟系统奠定重要的理论基础; 2100433B
本书清晰地阐述了多尺度结构性能关系的概念。在介绍量子理论和分子动力学经验方法的基础上,范教授深入地探讨了如何把这些方法与粗晶粒和连续介质模型相结合,并应用到工程上所关心的大尺度问题中,以满足器件与产品的设计要求。该书进一步强调了机械性能的多尺度模型,深入浅出地介绍了多尺度材料变形和破坏分析这一交叉学科领域,并特别留意了读者主动吸收信息、深入理解思考以及展望前景所需的知识与方法。
围绕将多尺度分析分为两大类以形成大范围分析框架的思路,本书阐述了分子动力学要义及其与量子力学的能量联结,评介了跨原子/连续介质的多尺度分析方法,阐述了提出的嵌套与耦合串行式跨微/细/宏观分析的原理与方法,并以复相弹塑性与损伤复合材料为例,介绍了相关的概念、步骤、结果及其与实验的比较。
序
Preface
前言
第1章导论
1.1材料的特性源自材料的原子结构与微观结构
1.2多尺度分析的研究目标、内容及串行式与并行式的研究方法
1.3材料设计中多尺度分析方法的选择
1.4两类空间多尺度问题及时问多尺度
1.4.1两类空间多尺度问题
1.4.2两类问题的基本区别
1.4.3时间多尺度问题
1.5不同应用背景下多尺度问题的示例
1.5.1珠光体钢轨钢力学行为的微、细、宏观多尺度分析
1.5.2生物活跃材料与人体医疗植入物的多尺度分析
1.5.3纳米陶瓷涂层抗腐蚀的多尺度分析
1.5.4波形蛋白质纤维的嵌套结构与多物理、多尺度性能
1.5.5材料脆韧转换分析中原子尺度与连续介质尺度的连接
1.6国际上多尺度分析的发展概况
1.6.1总的态势
1.6.2跨原子/连续介质(第一类)多尺度分析
1.6.3跨连续介质微/细/宏观(第二类)多尺度分析
1.6.4时间多尺度分析
1.6.5存在的问题及所作的努力
1.7兼顾前瞻性的内容设置
思考与探索
参考文献
第2章分子动力学要义及其与量子力学的能量连接
2.1分子动力学的发展概况及其重要性
2.1.1从发展趋势看研究分子动力学的意义
2.1.2分子动力学的一些研究领域
2.1.3分子动力学的时空尺度
2.2分子动力学的运动方程、势能函数、力与应力
2.2.1质点运动的拉格朗日方程
2.2.2势能函数U及作用于原子上的力与应力
2.3分子动力学的算法及其精度
2.3.1数值积分过程
2.3.2差分表达式
2.3.3Vetlet数值算法、精度分析及简例
2.3.4其他常用的算法
2.4力的计算与边界条件的处理
2.4.1分子动力学程序中力的计算算法
2.4.2分子动力学程序中力的并行算法
2.4.3分子动力学中边界条件的处理方法
2.5多体交互作用与嵌入原子法
2.5.1考虑多体作用的Tersoft与Brenner对势
2.5.2嵌入原子法
2.6陶瓷材料分子动力学模拟
2.6.1引言
2.6.2Born固体模型与考虑极化的壳体模型
2.7如何确定经验势中的参数
2.7.1LJ对势函数参数e与a的估算
2.7.2LB混合律对指数势及Morse势三参数的估算
2.7.3陶瓷氧化物势函数及其参数的确定
2.7.4用于研究磷酸盐生化活跃材料的势函数
2.7.5分数式离子键固体势函数
2.8如何确定分子动力学模型的原子结构坐标及进行图形显示
2.8.1分子动力学模型原子结构坐标的确定
2.8.2分子动力学的图形显示
2.9如何采用软件进行分子动力学的计算
2.9.1DL_Poly软件简介
2.9.2DL_Poly_2.18的文件库及输入文件的内容
2.9.3DL_Poly_2.18的输出文件
2.10量子力学与分子动力学的能量连接
2.10.1原子内的能量平衡及量子力学的基本概念
2.10.2分子动力学与量子力学的耦合
2.10.3薛定谔方程求解孤立原子的能量
2.10.4耦合系统的能量
2.10.5求解量子力学基本方程实现耦合的三种基本方法
2.10.6紧束缚方法
2.10.7Hartree-Fock理论及其相关的方法
2.10.8电子密度泛函理论
2.11实例:纳米涂层及植入物与液体界面分析中的分子动力学计算
2.11.1基本方法
2.11.2对势函数的确定
2.11.3氮化铁与基体铁界面剪切抗力的计算
2.11.4植入物与水一蛋白质系统界面的分子动力学计算
参考文献
第3章跨原子/连续介质多尺度分析
3.1引言
3.2跨第一原理/原子/宏观多尺度变形与破坏分析
3.2.1模型区域的分割及其耦合
3.2.2系统的总哈密顿量及其分解
3.2.3握手区的一般设计及MAAD的特点
3.2.4MAAD存在的问题
3.3一维模型
3.3.1FE/MD耦合运动方程的推导
3.3.2分子动力学与有限元耦合的数值例子
3.4Cauchy-Born法则及跨原子一连续介质尺度的解析方法
3.4.1Cauchy-Born法则
3.4.2关于Cauchy-Born法则精度的讨论
3.4.3基于Cauchy-Born法则的跨原子/连续介质尺度的解析方法
3.4.4解析方法的应用
3.5变形与破坏的拟连续介质多尺度分析
3.5.1QC方法的基本模型及能量计算
3.5.2QC方法边界的不协调性及鬼力
3.5.3QC方法的特殊贡献
3.5.4全部非局部化的QC方法
3.6QC与离散位错动力学耦合的多尺度分析
3.6.1基本模型
3.6.2解法:三种边值问题的叠加
3.6.3过渡区的处理及位错穿越过渡区
3.7用于动力学模拟的搭接区多尺度分析
3.8用于动力学模拟的桥接区多尺度分析
3.8.1位移场在两个不同尺度的分解
3.8.2运动的多尺度方程及其讨论
3.8.3桥接法多尺度框架及广义朗之万方程
3.8.4数值例题
3.8.5对桥接法的简短评论
3.9几种模型界面不协调性的比较
参考文献
第4章广义质点动力学多尺度模拟方法
4.1引言
4.2广义质点动力学方法的多尺度几何模型
4.2.1多尺度区的形成
4.2.2广义质点的级别与其表征的原子数的定量关系
4.2.3模型实例
4.3逆映射法求解广义质点系动力学方程
4.3.1对等价刚度规则的质疑
4.3.2映射与逆映射
4.4多尺度区的自然边界条件
4.4.1原子区与连续介质区边界的内禀不协调性
4.4.2广义质点动力学各尺度区问的自然边界
4.5广义质点动力学方法的验证
4.6广义质点动力学方法的初步应用
4.6.1相变
4.6.2相变的机制
参考文献
第5章串行嵌套式多尺度方法及复相材料循环弹塑性多尺度分析
5.1引言
5.2跨微/细/宏观三尺度分析的基本框架及尺度间的信息传递
5.3基于改进的自洽模型的细一宏观定量关系
5.3.1改进的自洽模型
5.3.2基于改进的自治方法的宏/细观定量关系
5.4非均质材料组成相的弹塑性本构关系
5.4.1带耗散的弹簧滑块模型对弹塑性材料本构关系的描述
5.4.2描述塑性响应的遗传型本构方程
5.4.3经典塑性理论及其非经典塑性理论的比较
5.5基于微观分析的微一细观定量关系
5.6基于原子位错分析的微观尺度塑性参数及其尺度效应
5.7由细观塑性应变决定宏观参量的数值方法
5.8复相材料循环弹塑性尺度效应的试验研究
5.9多尺度分析数值结果及其与试验结果的比较
参考文献
附注5A
附注5B
第6章串行耦合式多尺度方法及损伤层合复合材料的多尺度分析
6.1引言
6.2通过中间单元体联系大小尺度的串行嵌套式多尺度模型
6.2.1无损伤的条件下层合板(宏观)与片层(细观)的连接
6.2.2微观单元体等效本构方程与基体、纤维特性的关系
6.3损伤层合复合材料串行耦合式多尺度分析
6.3.1复合材料迭层方式对损伤起始及演化影响的试验结果
6.3.2含损伤时层合复合材料多尺度分析的特点
6.3.3损伤层片等效本构方程的形式
6.4细/宏观耦合模型及在位损伤函数的确定
6.4.1等效约束模型
6.4.2沿每一片层厚度的平均
6.4.3沿单元体宽度方向的平均过程,二维剪切滞后模型
6.4.4在位损伤函数的确定与表达式
6.4.5串行耦合式与串行嵌套式多尺度分析方法的区别
6.5基于损伤准则的串行耦合式多尺度破坏分析
6.6计及基体开裂演化的多尺度分析的计算结果及讨论
6.6.1沿纵向(y向)受拉伸时[O/90]s类型层合板就地损伤函数Azz及A66的确定
6.6.2沿纵向受拉伸载荷时[O/90]s类型层合板刚度的下降
6.6.3损伤裂纹的起始与演化
6.6.4多尺度模型的预言及其与试验结果的比较
参考文献
附注6A
附注6B
附录A原子与生物大分子的结构、排列及其运动
A.1原子的基本结构与电子结构
A.1.1原子的结构
A.1.2原子的电子结构
A.2原子的键连接
A.2.1金属键
A.2.2共价键
A.2.3离子键
A.2.4范德瓦耳斯键
A.2.5混合键连接
A.2.6键能量与原子间距
A.2.7对原子结构的小结
A.3原子的排列布置与单元晶胞
A.3.1三种级别的原子布置
A.3.2单元晶胞
A.4晶体结构的点、方向与平面
A.4.1点的坐标
A.4.2晶体的方向
A.4.3晶面的表征
A.4.4滑移系
A.5原子的稳定性与扩散
A.5.1扩散的描述
A.5.2扩散的机制
A.6蛋白质材料的结构
A.6.1蛋白质的多肽(polypeptides)链结构
A.6.2由侧链R决定的20种氨基酸的三组类型
A.6.3氨基酸的其他结构特点
A.7脱氧核糖核酸(DNA)的结构
A.7.1生物大分子与结构形成的一般规则
A.7.2核糖核酸(RNA)与脱氧核糖核酸(DNA)的结构
参考文献
附录B对比与评鉴:RCMM多尺度分析工作学术评论汇集
卷后语2100433B