中文名 | 土壤形态 | 定 义 | 土壤的外部特征 |
---|---|---|---|
主要特征 | 颜色,结构,质地 | 土壤颜色 | 棕色,有暗棕,黑棕,红棕等之分 |
土壤结构 | 块状,核状,柱状,片状 | 土壤质地 | 砾,砂,粉粒 |
从地面垂直向下的土壤纵断面称为土壤剖面(soil profile)。土壤剖面中与地表大致平行的层次,它是由成土作用而形成的,因此,称为土壤发生层(soil genefichorizons),简称土层。由非成土作用形成的层次,称土壤层次(soillayers)。
单个土体(pedon)是土壤剖面的立体化形式,作为土壤的三维实体,其体积最小。单个土体的横切面形态近似六边形,面积为1—10平方米,在此范围内任何土层在性态上是一致的,而该面积的大小取决于土壤的变异程度。若水平方向变异幅度<2米,而且所有土层的特征在水平方向连续一致,厚度也基本一致,则单个土体的面积约为1平方米。若有些土层在水平方向间歇出现或呈波状变异,重现一次的间距为2—7米,则其最大侧向延伸范围应等于该间距的一半,即1—3.5米,面积约为1—10平方米。如果土层这种重复出现的间隔超过7米,说明此间隔范围内已经不止是一种土壤,可能是多种土壤并存而形成土壤复区,此时,单个土体水平面积仍只有1平方米。单个土体的垂直面相当于土壤剖面的A B层的总和,称为土体层(solum)。
两个以上的单个土体组成的群体,称为聚合土体(polypedon),又称土壤个体(soilindividual)或土壤实体(soilbody)等。单个土体与聚合土体的关系就象一颗松树对一片松林、一株水稻对一块稻田一样。它是一个具体的景观单位,在土壤制图上为一最小制图单位,在土壤分类上则为一基本分类单位,相当于美国土壤分类中的一个土系(soilseries)或土型(soiltype),在中国土壤分类中大致相当于一个土种(soilspecies)或变种(variety)。土壤形态的剖面、单个土体和聚合土体三者之间的关系。
土层是原来的成土母质在成土作用影响下产生分异作用的结果,不同的土壤层次,可根据其颜色、结构、质地、结持性、新生体等特征进行划分。每一种成土类型都有其特征性的发生层组合,从而形成了各种土壤剖面。
1.)
土壤发生层的划分和命名19世纪末,俄国土壤学家道库恰耶夫最早把土壤剖面分为三个发生层,即:腐殖质聚积表层(A)、过渡层(B)和母质层(C)。后来有研究者又提出许多新的命名建议,土层的划分也越来越细。但基本土层命名仍不脱离道库恰耶夫的ABC传统命名法。自从1967年国际土壤学会提出把土壤剖面划分为:有机层(O)、腐殖质层(A)、淋溶层(E)、淀积层(B)、母质层(C)和母岩(R)等六个主要发生层以来,经过一个时期应用,中国近年来在土壤调查和研究中也趋向于采用O、A、E、B、C、R土层命名法。主要发生层的含义阐述于下。
O层:
指以分解的或未分解的有机质为主的土层。它可以位于矿质土壤的表面,也可被埋藏于一定深度。
A层:
形成于表层或位于O层之下的矿质发生层。土层中混有有机物质,或具有因耕作、放牧或类似的扰动作用而形成的土壤性质。它不具有B、E层的特征。
E层:
硅酸盐粘粒、铁、铝等单独或一起淋失,石英或其他抗风化矿物的砂粒或粉粒相对富集的矿质发生层。E层一般接近表层,位于O层或A层之下,B层之上。有时字母E不考虑它在剖面中的位置,而表示剖面中符合上述条件的任一发生层。
B层:
在上述各层的下面,并具有下列性质:
①硅酸盐粘粒、铁、铝、腐殖质、碳酸盐、石膏或硅的淀积;②碳酸盐的淋失;③残余二、三氧化物的富集;④有大量二、三氧化物胶膜,使土壤亮度较上、下土层为低,彩度较高,色调发红;⑤具粒状、块状或棱柱状结构。
C层:
母质层。多数是矿质层,但有机的湖积层也划为C层。
R层:
即坚硬基岩,如花岗岩、玄武岩、石英岩或硬结的石灰岩,砂岩等都属坚硬基岩。
G层(潜育层):
是长期被水饱和,土壤中的铁、锰被还原并迁移,土体呈灰蓝、灰绿或灰色的矿质发生层。
P层(犁底层):
由农具镇压、人畜践踏等压实而形成。主要见于水稻土耕作层之下,有时亦见于旱地土壤耕作层的下面。土层紧实、容重较大,既有物质的淋失,也有物质的淀积。
J层(矿质结壳层):
一般位于矿质土壤的A层之上,如盐结壳、铁结壳等。出现于A层之下的盐盘、铁盘等不能叫做J层。
凡兼有两种主要发生层特性的土层,称过渡层,如AE、BE、EB、BC、CB、AB、BA、AC、CA等,第一个字母标志占优势的主要土层。若来自两种土层的物质互相混杂,且可明显区分出来,则以斜竖“/”表示,如E/B、B/C。
此外,在一层土层中可续分出几个亚层,以阿拉伯数字作为后缀表示,如Bt《1—Bt2—Btk1—Btk2,当岩性不连续时,则以阿拉伯数字为前缀表示,如Ap—E—Bt1—2Bt2—2Bt3—2BC。
2.)
土层界线类型土层之间的界线有几种形状,大多数是平整状。此外,还有波状,见于森林土壤的腐殖质层下限;袋状,见于草原土壤的腐殖质层下限;舌状,见于生草灰化土灰化层下限和草原土壤的腐殖质层下限,“舌”的长宽比为2—5;指状,亦称水流状,见于冻土腐殖质层下限,指的长宽比大于5,也可由腐殖质沿根孔或掘土动物穴向下流动而成;参差状,也有称冲蚀状,见于强度灰化土的灰化层下限,是强淋溶作用土壤的特征;锯齿状,有时见于粘质灰化土;栅栏状,见于碱土脱碱化层与柱状层之间。土层的过渡情况可分为以下几种:
明显过渡:过渡界线的宽度为1厘米,也有人采用2或3厘米作为标准。
清楚过渡:界线宽1—3厘米,也有人采用2—5厘米或3—6厘米作为标准。
较清楚过渡:界线宽3—5厘米,也有人采用5—12厘米或6—13厘米作为标准。
逐渐过渡:界线宽大于5厘米,也有人采用大于12厘米作为标准。
观察土壤腐殖质形态的薄片,可以了解有机残体分解和腐殖质化各阶段的情况,腐殖质与无机成分怎样结合,以及生物对于土壤结构形成的影响,还可探索各种土壤生物发生发展的现象。
利用土壤微形态分析和水稳性测定,可获得土壤团聚体的详细数据,这好比人体肺部的X射线照片,土壤微形态照相图可表明土壤的内部结构、团聚体含量、团聚体大小比例、形状差异、土壤内表面积、微孔隙和团粒间的距离、土壤结构单一性或复杂性等,这可帮助定量地分析土壤结构内部生物的活动状况和障碍因素等。J.M.Soilean等发现人工淀积粘粒胶膜混有氧化铁时会降低植物对钾素的吸收。土壤微形态分析与土壤结构研究等资料相互配合,还可帮助判明土壤养分和土壤水分状况,对施肥和土壤水分管理等有实际指导意义。
不同类型的土壤有不同的土壤微结构,同一母质在不同环境条件下可形成不同类型的土壤微结构,特别是它们各个发生层次都有其特定的微垒结,从土壤微形态的薄片中可以看出这些现象,它不仅能作为鉴别土壤类型的指标,并可从新的角度阐明土壤的内在发生学本质。对长期湿润和干湿交替的湿润热带高度风化土壤就更为必要。如红化(redearthening)土壤、假潜育化土壤和硬结的砖红壤性土壤与那些尚未变化的棕色土(brownsoil)普遍很难区别,但是用土壤微形态技术就较易分辨。其中盐基饱和的变种是热带最肥沃的土壤,不用土壤薄片技术就不能分清硬化砖红物质与沼铁矿硬层的区别。又如根据红壤微形态学研究腐殖质的种类和发生过程与阶段,可分辨出10种黑色石灰土和12种薄层土(rankers)的差异。库比恩纳按表土层中碎屑状的与再结晶的碳酸钙的比例,从土壤微形态学观点可区分出湿润黑色石灰土与夏旱黑色石灰土(xerorendzinas)的差别。南北半球温带广泛分布的黄土型农业土壤组合具有一系列不同的土壤微垒结。土壤薄片的比较分析是判别这些土壤微垒结的唯一途径。土壤微形态学已被公认是研究诊断性土壤发生学必要的手段之一,通过土壤微形态资料有助于说明许多土壤形成过程。美国《土壤系统分类》一书中许多诊断性土层也有土壤微形态的土壤薄片鉴定。Eswaran,H.认为,微形态研究的目的大多在于帮助深入了解土壤发生学。例如,淀积性粘粒胶膜是鉴定粘化土层的标准之一。不但鉴定土壤类型需要应用土壤微形态技术,而且在绘制土壤图,划分土壤界限时也可利用这种技术进行检查核实。因此,荷兰、英国和其他欧洲国家以及美国、澳大利亚和新西兰诸国的土壤调查或研究机构中,都先后成立了土壤微形态研究室。总之,通过土壤微形态能够深入地研究土壤内部,从微观世界探讨土壤的面貌,丰富了土壤科学,使土壤科学更富有生命力。2100433B
土壤形态主要特征
在土壤形成以后,各土层在组成和性质上是不同的,所以,反映在剖面形态特征上,各层也是有差别的。在野外通过土壤剖面形态的观察,可判断出土壤的一些重要性质。土壤重要的形态特征有:实度,孔隙,湿度,新生体,侵入体,动物孔穴等。
土壤颜色是土壤内在物质组成在外在色彩的表现。由於土壤的矿物组成和化学组成不同,所以土壤的颜色是
多种多样的。通常在鉴别土壤层次和土壤分类时,土壤颜色是非常明显的特征.土壤颜色采用芒塞尔颜色命名系统,将土块与标准颜色卡对比,给予命名。给土壤的颜色定名时,用一种颜色常常有困难,往往要用两种颜色来表示,如棕色,有暗棕,黑棕,红棕等之分。这样定名,在前面的字是形容词,是指次要的颜色,而后面的字是指主要的颜色。
决定土壤的颜色,主要有以下几种物质:
腐殖质含量多时,使土壤颜色呈黑色。含量少时,使土壤颜色呈暗灰色。
氧化铁在土壤中的氧化铁一般多为含水氧化铁,如褐铁矿,针铁矿等,这些矿物使土壤呈铁锈色和黄色。石英,斜长石,方解石,高岭石,二氧化硅粉末,碳酸钙粉末等,它们都能使土壤呈白色。氧化亚铁广泛出现在沼泽土,潜育土中,它使土壤具有蓝色或青灰色,如蓝铁矿,这类矿物为白色,但遇空气中德氧即很快变为青灰色。除物质成分影响土壤颜色外,土壤的物理性状不同,也会使土色有所差别。例如,土壤愈湿,颜色愈深,土壤愈细,颜色愈浅,光线愈暗,颜色愈深。所以在比较土壤颜色时,必须注明条件。
土壤颜色本身对树木生长并不重要,但是颜色却可指示土壤的许多重要特征.土壤颜色还可影响土壤的温度.深色土壤比浅色土壤易吸热.有森林植被的土壤受温度的影响比裸露的土壤小.森林火灾后,表层土壤颜色变深,从而导致土温增加.
土壤结构就是土壤固体颗粒的空间排列方式。自然界的土壤,往往不是以单粒状态存在,而是
形成大小不同,形态各异的团聚体,这些团聚体或颗粒就是各种土壤结构。根据土壤的结构形状和大小可归纳为块状,核状,柱状,片状,微团聚体及单粒结构等。
土壤的结构状况对土壤的肥力高低,微生物的活动以及耕性等都有很大的影响。同时一些人为的活动将很大程度上破坏土壤的结构.如森林采伐后,由于重型机械的使用将导致土壤被压实,土壤表层结构被破坏.
土壤质地是土壤中各种颗粒,如砾,砂,粉粒,粘粒的重量百分含量。土壤质地影响土壤肥力,如土壤持水力,土壤通气性,有机质的贮存,营养元素的吸附和土壤的耕性,从而影响树木的生长.
准确测定土壤质地要用机械分析来进行,但在野外常用指测法来判断土壤质地,将土壤质地分为:砂土,砂壤土,轻壤土,中壤土,重壤土,粘土等。
土壤水分是植物生长所必需的土壤肥力因素。根据土壤水分含量,在野外将土壤湿度分为:干,潮,湿,重湿,极湿等。
在土壤形成过程中新产生的或聚积的物质称为新生体,它们具有一定的外形和界限。新生体可以按它们的外观分类,也可按它们的化学组成来分类。按外观分,新生体盐霜,盐斑,结核等。
按照化学组成分,新生体可由易溶性盐类组成,如氯化钠,硫酸钠,碳酸钙等;还有由晶质或非晶质的化合物组成,如含水氧化铁的化合物,氧化亚铁的化合物,锰的化合物,二氧化硅和有机物等。
新生体是判断土壤性质,土壤组成和发生过程等非常重要的特征。例如,盐结皮和盐霜,表示土壤中有可溶性盐类的存在。锈斑和铁结核是近代或过去,在水影响下产生于干湿交替的特征。
(六)侵入体:位于土体中,但不是土壤形成过程中聚积和产生的物体,称为侵入体。侵入体有砖头,瓦片,铁器和磁器等。一般常见于耕作土壤中,是判断人为经营活动对土壤层次影响所达到的深度,以及土层的来源等。
土壤水是植物吸收水分的主要来源(水培植物除外),另外植物也可以直接吸收少量落在叶片上的水分。土壤水的主要来源是降水和灌溉水,参与岩石圈-生物圈-大气圈-水圈的水分大循环。土壤水存在于土壤孔隙中,尤其是...
(1)施用粉 每平方米的苗床,掺入100~200g的粉,其酸性有效期可维持2~3年。 (2)施用亚铁粉末 每平方米施入150g的亚铁粉末,施后可降低0.5~1.0单位的pH值;对于特别粘重的土壤,用量...
土壤是地球上能够生长绿色植物的疏松表层。不同的土壤类型,分层也不一样。一般人为地把他们分为A,B, C三个层,即表层,淋溶层,母质层,接下来再细分。表土层又可分为耕作层和犁底层,也叫腐殖质—...
前面所述的土壤形态可称为土壤大形态,而土壤微形态是土壤形态学研究的进一步深入。土壤微形态学是指通过光学或电子学放大的方法观察土壤内部细微形象的科学。
土壤微形态研究的主要内容是土壤微垒结或称土壤微构造。
是由骨骼颗粒(skeletongrains)、细粒物质(plasma)和孔隙(voids)组成的。
(
骨骼颗粒)
是指土中大于2微米的矿物质颗粒和有机残遗物,在土壤形成过程中比较稳定,不易移动、再组织或凝聚。进一步细分时,大于10微米的叫骨骼颗粒,2—10微米的叫微骨骼颗粒(microscopicskeletongrains),再按骨骼颗粒的特征和矿物组成又可细分为斑晶骨骼颗粒、粉砂质骨骼颗粒、微晶方解石颗粒等。
(细粒物质)
是指土壤形成过程中可移动、再组织和凝聚的部分,包括骨骼颗粒以外的细粉砂、粘粒、游离氧化物和腐殖质等土壤物质。土壤孔隙,指固体土壤之间的空隙。土壤基体易与其周围一般物质相区分的单独物体,称土壤形成物相(pedologicalteatures)它是反映特定的土壤形成过程的结果。细粒物质微结(plasmicfabric)是土壤基体中细粒物质所仅有的土壤形成物相,是指细粒物质组成分在组合排列上起了明显变化的离析物,也称为细粒物质离析物(plasmicseparation)。
(soilmicroscopicfabric)是指可以借助显微镜对未破坏构造的土壤薄片进行研究的土壤垒结状况。不同的土类具有不同的微垒结特征。土壤微垒结是四相结构系统,其固相基质构成所谓的土壤基体(S-matrix)。土壤基体可理解为最简单的(原始的)结构体范围内的物质,或者是构成非结构的,无结构的块体的物质,其内可以有新生体出现。
土壤微垒结的分类是土壤微形态学的核心。这种分类主要包括两个方面:一是土壤中的粗颗粒(称为骨骼颗粒,一般大于粉砂粒)与细微颗粒(称为细粒物质,包括细粉砂、粘粒、游离三二氧化物和腐殖质等)的“相关分布格式”(relateddistributionpattern)的类型;二是土壤中细粒物质所特有的微垒结,即细粒物质微垒结,它表现为“光性方位格式”(orientationpattern),指土壤细微颗粒在正交偏光镜下的消光格式和异向性(anisotropy)。这种分类是单纯以形态为根据的,不涉及其发生学根源,因为同一土壤微垒结可以从不同的发生学过程而来。
土壤微垒结分类中的基本类型
库比恩纳(W.L.Kübiena,1938)对土壤中的粗颗粒与细微颗粒的相关分布格式进行研究,他根据土壤中矿物粗颗粒与细微颗粒两种基本现象:一是矿物粗颗粒是裸露的还是外膜的,二是细粒物质呈何种形状而存在,如外膜、桥键、支撑物、矿物颗粒间隙中的团聚体,或作为矿物粗颗粒的嵌埋介质。1973年R.Brewer在库比恩纳的分类基础上新分出裸露的骨架成分、包被的骨架成分、嵌埋的骨架成分等分类体系,在各体系中还进行了更细的划分。应当指出,这种简单的相关分布的微垒结类型还不能概括含有各种土壤物相,如多种胶膜、结核等等的土壤形态类型。
对于不透明或弱透明厚层(25μ)土壤薄片,往往遮蔽了结晶的和异向性的颗粒,在高倍显微镜下,由于聚光力强而能见到细粒物质离析物的光柱方位格式,因此按光柱方位格式分出离析物的和无离析物的细粒物质微垒结(sepicandasepicplasmicfabric)、波动消光的细粒物质微垒结(undulicplasmicfabric)、内质细粒物质微垒结(isoficplasmicfabric)、晶质细粒和复合细粒物质微垒结(crysticandcompoundplasmicfabric)等类型。
砂土类土壤黏土类土壤
以辽西朝阳挖掘的17个具有代表性的土壤剖面为例,基于系统观测和描述土壤野外形态特征,确定了评价古土壤发育的8项土壤剖面野外形态指标,建立了土壤剖面野外形态发育综合指数模型。
为了了解不同土壤之间的关系以及它的特定用途,所以把土壤分类。第一个土壤分类系统是俄罗斯科学家Dokuchaev在1880年左右开发的。它被美国和欧洲研究者修改并且开发这个系统通常使用到了1960年代。它基于土壤的特别形态取决于他们的材料和母质的观点。在20世纪60年代,不同的分类系统开始出现,他们侧重于土壤形态而不是他们的材料和母质。自那时以来,分类系统又经历了进一步的修改。
这里指一般大众的分类方法。(此排列愈上面愈优质)
黑土 - 富含腐植质的土黄土 - 一般常见的土红土 - 富含氧化铁的土这是土壤分类的最高级别。以后缀"sol"结束。在美国分类法中,这十二个排列是:
淋余土 (Alfisol) - 淋余土与极育土相较,系属高盐基森林土。成土过程的标志,为有层状结晶格子黏粒移位,盐基不过分缺乏,常见之层序组合为具有一淡色或黑癠披被层覆盖在一黏聚层之上。气候环境多属温暖,且在植物生长季节常有3个月以上能供给中性植物有效水分。典型的淋余土中之有机物穿透浅,有显著的黏粒聚积,黏粒聚积层次可厚可薄,而与整个盐基饱和度皆属中等偏高,且整个剖面变化不大。灰烬土 (Andisols)- 灰烬土是指土壤剖面中有60%以上的厚度具有火山灰土壤性质(Andic soil properties)的土壤,通常在火山爆发后生成。灰烬土的主要特性为:(1)容积比重很低,一般为小于900公斤/立方米。(2)无定形物质很多,草酸可萃取铁铝含量多(一般大于2%)。(3)对磷酸具有强吸附力。因此灰烬土通常很轻,为强酸性土壤,施磷肥效果低。主要分布于阳明山国家公园的大部分地区,土体表面30~50cm大部分为黑色物质,中间为由安山岩风化的物质,大多呈黄棕色,底层为安山岩。旱境土 (Aridisol) - 旱境土所共有之独具性质,为一年中有很长时期缺乏有效水分以供中性植物生长,可有一个或一个以上之土壤化育层,表土层不受腐植质之污染,而使颜色呈显著加深,与缺乏深宽罅隙。在土壤温度温暖之程度足够植物生长之大多数时间内,缺乏有效水分,与在土壤温度高于8°C时,从不会含有效水分可连续供植物生长长达90天。旱境土为干旱地区之主要土壤,地表处仅有少量有机碳聚积,常有大量之碳酸盐类与黏粒聚积。新成土 (Entisol) - 主要为在土壤中缺乏由重要成土过程中任何一组所遗留下来之标志能成为区分特征,亦可无附属特性。故新成土共有之独具性质为系矿物质土壤物质并缺乏明显的土壤化育层次,可发生于任何气候下。缺乏化育层的理由,可能为顽固的母质;硬而缓慢溶解岩石;缺乏足够的时间可供化育层的形成与在坡地上侵蚀速度超过土壤化育层的形成。一般言之,新成土黏粒缺乏位移情形,有机物少量聚积。冰冻土 (Gelisols)- 冰冻土之独具性质为生成于永远冻结地带(permafrost zone),其定义为土壤表层下100cm为永冻状态,或是在表层100cm内含有永冻物质(Gelic materials)而200cm以下处于永冻状态。有机质土 (Histosol) - 有机质土所独具性质为在上部80cm内含有甚高之有机物,一般有机物厚度在80cm内,有一半以上土层至少含有20~30%,或富含有机物之层次系停落在岩石上或岩石之粗碎块上。此类土壤皆为由于在水中聚积,且多少曾进行分解之植物残体所组成,但亦有若干系由森林落叶枯枝或藓苔植物在过湿环境下与可以自由排水情形下生成。弱育土 (Inceptisol) - 弱育土独具之性质为在一年中有半年以上时间或有连续3个月以上时间是温暖季节期间,土壤含有水分可有效于植物生长,有一个或一个以上曾受改变或稍具位移性质(除碳酸盐类或无定形硅酸外)集中现象之土壤化育层次。质地细于壤质细砂土,含有若干可风化性矿物,黏粒成份具有中至高能量之阳离子保持力。弱育土除在较干环境外,几乎在任何环境下皆可生成,土层常较浅,且多数位于相当年轻之地表面。黑沃土 (Mollisol) - 黑沃土所独具之性质为有一暗棕至黑色之披被层(Mollic epipedon),构成A与B化育层总厚之1/3或以上,或其厚度大于25cm,具有明显构造,或当干时呈软的构造,在A1化育层与B化育层中其可萃取阳离子以钙占优势,占优势之结晶性黏土矿物具有中或高阳离子交换能力,若土壤在50cm内有深宽罅隙,则在此深度以内,若干化育层中黏粒含量为<30%。该土壤为地球上最肥沃的土壤。氧化土 (Oxisol) - 氧化土之独具性质为除石英外,大多数矿物皆受极度风化而成为高岭土与游离氧化物,黏粒部份仅具有甚低活性,为壤质或黏质质地。氧化物土为发生在热带或亚热带地区,系地表有长期间之安定处之特征性土壤,发育形成时必在湿润气候下。典型的氧化物土之有机碳含量高、阳离子交换能量低与黏粒含量随深度而减少。淋淀土 (Spodosol]) - 淋淀土至少在上部层序中,由支配性成土程序位移腐植质与铝,或腐植质铝与铁作为无定形物质而造成之标致。淋淀土所独具之性质为一具高阳离子交换能量之黑色或带红色之无定形物质聚积的B化育层,即所谓的淋淀层(Spodic horizon)。在多数未经扰动的土壤,均有一灰白层覆盖于B层之上。淋淀土所具有之附属特性为湿润或温湿,壤质或砂质质地,有高的pH依赖交换能量及盐基含量很少。极育土 (Ultisol) - 极育土与淋余土相比较,极育土属低盐基森林土,经强烈淋溶作用之标致,极育土共有之独具性质为有一黏聚层,盐基贮藏量低,特别在较低之化育层中是如此,年平均土温度均高于8°C。极育土一般黏粒含量有先随深度之增加而增加,然后再降低之趋势。阳离子交换容量大多数为中至低等,随深度而递减之盐基饱和百分率系反射于植物之盐基循环或肥料之施用。极育土分布地区温暖而有水分供给,故施肥可成高生产地。膨转土 (Vertisol) - 此类土壤为具有规则性之土壤混搅或骚动作用及有阻止其诊断或鉴别层次发育之成土过程的标致。又因为有土壤物质之移动作用,故其诊断或鉴别性质有很多附属性质,例如当土壤干时,总体密度甚高,当湿润时导水度甚低,当土壤湿润后再干燥,土表有相当起伏与由于有罅隙,可使土壤甚速干燥。膨转土共有之独具性质为黏粒含量高,随水分含量变化,体积有显著改变,在若干季节中有深宽罅隙,有断面擦痕,几轧地形,与楔形构造之粒团和水平层次呈某角度之倾斜。1、客土材料。黏土、砂、有机质比例适中,物理和化学稳定性好的改良土壤,经团粒反应后可以确保土壤培养基质量。
2、复合纤维料:增加了适合植物生长的缓释肥,为了增加土壤培养基的强度和保水性,加入复合性纤维。
3、土壤稳定剂。由天然植物性油脂的诱导体构成,施工时对团粒反应起促进作用,形成稳定的土壤培养基。
4、团粒剂。线状有机高分子,能再现最理想土壤形态。
5、植物纤维。植物纤维吸水性良好,添加后使土壤颗粒的连接作用更加紧密,对土壤培养基起加固作用。
6、种子。根据不同的绿化目标,选择不同种子的配合比,多选择抗性好,对环境承受能力强,适合本地生长的乡土种子。根据作业所在地区的气候特征、物种乡土化、多样化特征及工程的绿化目标,选择当地的乡土树种,一般为臭椿、刺槐、火炬树、紫穗槐、胡枝子、马棘等,按照实验得出配合比,混合作为喷播的种子,并用喷播设备将喷播材料分层喷播至喷播厚度。