液化地基处理措施

我国是一个多地震国家,也是世界上地震灾害最严重的国家 ,地震经常威胁着工程安全。当前我国正处在新的地震活跃期,地震发生频率增大,这对我国正在蓬勃发展的基础设施建设构成了严重威胁。因此,在地震多发地区修建建筑物或构筑物,必须对可能液化土体进行处理。工程上采用的抗震措施一般分为两种,一种是全部消除地基液化沉陷措施,二是部分消除地基液化沉陷措施。根据建筑物的重要性、地基的液化等级,结合具体情况综合确定选择全部或部分消除液化沉陷。

综合各种法的性质和抗震的机理,地基液化的措施大致分为三类:

(一)采用桩基础(非摩擦桩)或者是深基础避开液化土层,这类方法能完全消除地基液化沉陷造成的危害。

桩基础由若干根桩和承台两部分组成,它将承台以上结构物传来的外力通过承台,由桩传到较深的地基持力层中去,承台将各桩联成一个整体共同承受荷载。桩直接穿过可能液化的土层,桩端深入承载力较高的土层,桩端伸入液化深度以下稳定土层中的长度(不包括桩尖部分)应按计算确定,且对碎石土、砾,粗,中砂,坚硬粘性土和密实粉土尚不小于0.5m,对其他非岩石土类尚不小于1.5m。在土体液化时,虽然一部分土体液化,但是上部荷载依然能通过桩传到较深的持力层。建筑物从而避免了沉陷。

深基础能避免沉陷造成的危害的机理和桩基础大致相同,深基础的底面放在位于液化深度以下的稳定土层上,其深度不应小于0.5m。

(二)采用挤密法:强夯法;振冲加密法;挤密碎石桩法等

1.强夯法 强夯法利用重夯锤,高落距产生的高夯击能给地基一冲击力,在地基中长生冲击波,振密,挤密地基土体。当夯击时,夯锤对地基浅部土体进行冲切,土体结构破坏,形成夯坑,并对夯坑周围的土体进行动力挤压,夯坑四周地表可能产生隆起。

细颗粒饱和土多采用动力固结,动力固结的主要机理是巨大的冲击能量在土中产生很大的应力波,破坏了土体原有的结构,使土体局部发生液化并产生许多裂隙,增加了排水通道,使孔隙水顺利逸出,待超孔隙水压力消散后,土体固结。由于软土的触变性,强度得到提高。

对饱和无粘性土地基,在冲击力作用下,土体可能会产生液化,其压密过程同爆破和振动密实的过程类似,挤密,振密效果也是明显的。对饱和粘性土地基,在锤击作用下,在夯击点附近地基土体结构破坏,产生触变,在一定范围内的地基土体将产生超孔压,并且逐渐消散,地基土固结,孔隙比减小,强度提高。

2.振冲加密法 振冲法是利用振冲器的高频振动和高压水流,边振边冲,将振冲器在地面预定桩位处沉到地基中设计的预定深度,形成桩孔。经过清孔后,向孔内逐段填入碎石,每段填料在振冲器振动作用下振挤、密实。然后提升振冲器,再向孔内填入一段碎石,再用振冲器将其振挤密实。通过重复填料和振密,在地基中形成碎石桩桩体。

振冲法一方面依靠振冲器的振动使饱和砂层发生液化,砂颗粒重新排列孔隙减小,另一方面依靠振冲器的水平振动力,加回填料使砂层挤密,从而达到提高地基承载力,减小沉降,并提高土体抗液化能力。

3.挤密碎石桩法 砂石桩法主要通过挤密、排水减压和砂基预震来提高地基承载力,减小沉降。

挤密作用是指在采用沉管法或干振法,会在成桩过程中桩管对周围砂层产生很大的横向挤压力,桩管体积的砂挤向桩管周围的砂层,使桩管周围的砂层孔隙比减小,密实度增大。在采用振冲挤密桩施工过程中由于水冲使松散砂土处于饱和状态,砂土在强烈的高频强迫振动下产生液化并重新排列致密,且在桩孔中填入大量粗骨料后,被强大的水平振动力挤入周围土中,这种强制挤密使砂土的相对密实度增加,孔隙率降低,干密度和内摩角增大,土的物理性能改善,地基承载力在幅度提高。

排水减压作用是指对砂土液化机理的研究证明,当饱和松散砂土受到剪切循环荷载作用时,将发生体积的收缩和趋于密实,在砂土无排水条件进体积的快速收缩将导致超静孔隙水压力来不及消散而急剧上升。当砂土中的有效应力降低为零时便形成了完全液化。碎石桩加固砂土时,桩孔内充填碎石等反滤性好的粗颗粒料,在地基中形成渗透性能良好的人工竖向排水减压通道,可有效地消散和防止超孔隙水压力的增高和砂土产生液化,并可加快地基的排水固结。

砂基预震效应是指在一定应力循环次数下,当两试样的相对密实度相同时,要造成经过预震的试样发生液化,所需施加的应力要比施加未经预震的试样引起液化所需应力值提高46%,从而得出了砂土液化特性除了与砂土的相对密实度有关外,还与其振动应变史有关的结论。在振冲法施工时,振冲器的振动作用使地基土获得强烈的预震,这对砂土增强抗液化能力是极为有利的。 2100433B

土壤液化造价信息

市场价 信息价 询价
材料名称 规格/型号 市场价
(除税)
工程建议价
(除税)
行情 品牌 单位 税率 供应商 报价日期
生物土壤滤池一体化处理设备 处理气量:7000m3/h;生物土壤滤池含布气系统、生物土壤,喷头、PPR连接管)等材料,滤池填料、喷淋系统 查看价格 查看价格

江苏博恩

13% 广西立淇环保有限公司
生物土壤滤池一体化处理设备 1处理气量:65000m3/h;2、含布气系统、生物土壤,滤池填料、喷淋系统3、除臭系统4、其他配套系统5、技术服务包,不含设计 查看价格 查看价格

杭州楚环

13% 广西立淇环保有限公司
生物土壤滤池一体化处理设备 1处理气量:22500m3/h;占地130m2;设计接触时间不小于40s;辅助设备及相关工艺系统;2、生物土壤滤池含布气系统、生物土壤,滤池填料、喷淋系统3、除臭系统4、设计及技术服务包 查看价格 查看价格

桂润

13% 广西立淇环保有限公司
生物土壤滤池一体化处理设备 1处理气量:20000m3/h;辅助设备及相关工艺系统;2.含送风系统3.布气系统4.生物土壤及生态系统5.滤池填料及除臭系统6.喷淋系统7.设计及技术服务包 查看价格 查看价格

江苏博恩

13% 广西立淇环保有限公司
生物土壤滤池一体化处理设备 1.处理气量:6000m3/h ;2.含送风系统3.布气系统4.生物土壤及生态系统5.滤池填料及除臭系统6.喷淋系统7.设计及技术服务包 查看价格 查看价格

桂润

13% 广西立淇环保有限公司
消声措施 包括伸缩器、隔振原件及隔振器、吸声材料、管道支架等 查看价格 查看价格

13% 上海熊猫机械(集团)有限公司
生物土壤滤池 1处理气量:22000m3/h;土壤滤池占地面积:120m2;滤池深:1.8m;设计接触时间不小于40s;辅助设备及相关工艺系统; 2、布气系统、生物土壤,滤池填料、喷淋系统 3、设计及技术服务包 查看价格 查看价格

杭州楚环

13% 广西立淇环保有限公司
LoRa智能土壤采集器 ZHCJ-01 查看价格 查看价格

绿粤

13% 深圳市绿粤生态科技有限公司
材料名称 规格/型号 除税
信息价
含税
信息价
行情 品牌 单位 税率 地区/时间
自控热处理 查看价格 查看价格

台班 汕头市2011年4季度信息价
自控热处理 查看价格 查看价格

台班 汕头市2011年3季度信息价
自控热处理 查看价格 查看价格

台班 广州市2011年1季度信息价
自控热处理 查看价格 查看价格

台班 汕头市2010年3季度信息价
自控热处理 查看价格 查看价格

台班 汕头市2010年2季度信息价
自控热处理 查看价格 查看价格

台班 汕头市2010年1季度信息价
自控热处理 查看价格 查看价格

台班 广州市2009年4季度信息价
自控热处理 查看价格 查看价格

台班 汕头市2009年2季度信息价
材料名称 规格/需求量 报价数 最新报价
(元)
供应商 报价地区 最新报价时间
耕作层土壤、犁底层土壤、回填用素土 耕作层土壤、犁底层土壤、回填用素土|1m² 1 查看价格 佛山市顺德方通渣土运输有限公司 广东  广州市 2021-10-27
土壤灭菌剂 土壤灭菌剂|1m² 3 查看价格 四川贝斯特力科技有限公司 四川   2022-06-08
土壤传感器 土壤传感器|1台 1 查看价格 广州市智雨节水科技有限公司 全国   2020-08-17
化处理 处理能力:417m3/(d·套)|72套 1 查看价格 广东岑安机电有限公司 全国   2021-09-07
化处理 处理能力:417m3/(d·套)|72套 1 查看价格 广东岑安机电有限公司 全国   2021-09-07
化处理系统 化处理系统(YD-50m3/h-UF)|1套 1 查看价格 山东千迈环保装备科技有限公司 广西   2019-01-24
化处理 (1)设备号:JHCLX-W-1 (2)设备类型:净化处理器 (3)风量:2000M^3/h, (4)功率:100w|1台 1 查看价格 东莞市酷维环保净化科技有限公司    2017-03-22
化处理 (1)设备号:JHCLX-W-3 (2)设备类型:净化处理器 (3)风量:5000M^3/h, (4)功率:250w|1台 1 查看价格 东莞市酷维环保净化科技有限公司    2017-03-22

大量实验和历史表明,土壤液化有两个必要的条件:一是土壤必须处于饱和状态;二是要有一定条件的动荷载作用。但是并不是所有具有上述两个条件的土壤都能液化。饱和的土在受到动荷载的往复剪切作用下,颗粒排列将趋于密室(剪缩性),如果土的透水性很差的话,土壤的孔隙水压力将会很难排出,从而导致孔隙水压力急剧上升,土壤的有效应力却在减小,当孔隙水压力与土壤的固结压力相等时,有效应力减小于零,土的抗剪强度完全消失,处于没有抵抗外荷载能力的悬浮状态,土壤就发生了液化。

发生液化的土类主要有两种:砂土和粉土。因为他们的透水能力很弱,而且粘聚力也很弱。碎石、砾石、砾砂的渗透性好,抗剪强度也很高,很少发生液化。粘土和粉质粘土间有黏性亦不易液化。中、粗、砾砂也常发生液化,但比粉、细砂和粉土要少些。砾石虽透水性好,但如果地震动很强或上覆透水性很差的土层,也可能发生液化。

地震、波浪、车辆、机器振动、打桩以及爆破等都可能一起饱和砂土或粉土的液化,其中又以地震引起的大面积甚至深层的土体液化的危害性最大,它具有面广、危害重等特点,常能造成场地的整体性失稳。因此,近年来一起国内外工程界的普遍重视,成为工程抗震设计的重要内容之一。

地震引起砂土壤液化造成的灾害宏观表现主要有:

1.喷砂冒水 液化土层中出现相当高的孔隙水压力,会导致低洼的地方或土层缝隙处喷出砂、水混合物。喷出的砂粒可能破坏农田,淤塞渠道。喷砂冒水的范围往往很广,持续时间可达几个小时甚至几天,水头可达2~3m。

2.震陷 液化喷砂冒水会带走大量土颗粒,地基产生不均匀沉陷,使建筑物倾斜、开裂甚至倒塌。

3.滑坡 在岸坡或坝坡中的饱和砂粉土层,由于液化而丧失抗剪强度,使土坡失去稳定,沿着液化层滑动,形成大面积滑坡。

4.上浮 贮罐、管道等空腹埋置结构可能在周围土体液化是上浮,对于生命线工程来讲,上浮常常引起严重的后果。

土壤液化为一类地盘破坏的方式。土壤液化主要发生在砂质土壤为主并且地下水位较高的区域,例如海岸地区、河水行经的冲积平原区或旧河道分布区等。这些区域常分布一些充满地下水而饱和的疏松砂土,由于它们本身的结构较弱,很容易因为外力而发生土壤结构的改变。

在平时,地下水的压力与土壤层间的压力维持一个平衡状态,地下水与土壤层之间保持接口上的稳定,并不会侵入上面的土层。但是当地震发生受到应力的影响时,地下水的移动情形将大过砂土能将多余水分排出的速率。这时土体孔隙中的水压力,由于来不及消散而累积上升,并导致土壤剪力强度降低。当此情形继续演变,孔隙水压会增大到足以使土粒在孔隙水中悬浮,这时土层颗粒的承载力顿时会被水给取代,土壤结构内部会变成像液体一样可以流动的情形,最终导致整个地盘失去承载力并且大量变形。此时若砂土层液化的位置较浅,或者地表分布疏松的孔隙,泥水还可借着压力沿着裂隙喷发到地表,形成喷砂的现象。这是地面上判别土壤液化十分重要的指标。土壤液化发生的区域容易造成地上建筑物的倾斜、下陷、结构性损坏、甚至倒塌的情形。因此经过地质调查容易发生土壤液化的区域是不宜进行建筑开发的。

最容易发生的液化的土壤是年代比较轻(冰河时期,近一万年)的细沙,或颗粒相当且排列整齐的泥土中,地层只有数尺厚,富含水分。这样的地形通常可以在河岸、海岸或因风力而堆积而成的沙丘中找到。土壤液化的例子包括流沙、流粘土、浊流和地震液化。

土壤液化处理措施常见问题

  • 混凝土的错台处理措施

                  钢模高度不够,用木模拼接,在接缝处加海绵条防止漏砼浆,缩小钢管上下间距(还有0.5米,),螺杆要上两端分别上2个 蝴蝶扣等措施 为了更好的加固模板。

  • 软土地基的处理措施

    1、强夯法处理。强夯法是利用重锤自由落下的巨大冲力能所产生地冲击波反复夯击地基土,将夯面以下一定深度地土层夯实,以提高地基的承载力和土体的稳定性,降低压缩性。由于夯击能力大,加固深度也大。对于一般的软...

  • 营养液能浇土壤里吗

    无机肥配制的营养液是可以用于土栽花卉的,不过这有个缺点:时间长了土壤盐化板结,如果长期不换土,能造成花卉生长不良甚至死亡。

土壤液化处理措施文献

探测由于土壤液化造成建筑破坏的应用 探测由于土壤液化造成建筑破坏的应用

格式:pdf

大小:131KB

页数: 未知

评分: 4.8

探测由于土壤液化造成建筑破坏的应用

立即下载

水下管道的两种铺设方式

1、铺设在水底上;

2、埋设在水底下沟槽内;

埋设在水底下沟槽内时,沟槽内管顶铺设深度一般为管径的3-4倍,以避免船只抛锚,河床冲刷等影响。海下管道的埋地铺设,还应防止风暴时管道可能浮漂或下沉,为此,管道应埋设在海床下足够深度。此外,如果水道较深,水底之上铺管不会影响航运,水底平坦,沿管线没有障碍物和悬空地,管道不会因船只抛锚、流体动力、土壤液化、床底土运动、河床冲刷或其他原因引起破坏,则可将管道直接铺设在稳定的河床或海床上。

水底直接敷设的管道抗震性能要优于水下沟槽埋设。

水下沟槽开挖

管道水下沟槽敷设一般有3种情况:

1、先挖槽后埋管;

2、挖槽和埋管同时进行;

3、先放管后沉入土内。

这些方法的选择取决于水底土质、水系宽度和深度等因素。

先挖槽后埋管的优点是施工设备简单;缺点是管线定位不易准确,槽底平整度差,沟槽准直度低,而且易于回淤。因此,当采用这种方法时,应适当选择槽底宽度和开挖深度。底宽一般为管外径加0.8-1.0m.开挖深度根据回淤情况而定,边坡系数为1:2-1:4.粘土河床的回淤情况并不严重,沙土回淤迅速。常用的水下沟槽开挖方法和设备有爆破法、岸式索铲、挖泥船、高压泵船等。

爆破法开挖:适用于岩石河床;

岸式索铲:适用于狭窄水系。铲斗用岸上卷扬机曳引。铲斗顺滑道往上拉,随着挖深增加而往下放滑道。这种方法可以比较准确地控制沟槽的平面位置和准直度。

挖泥船和高压泵船:水系宽阔一般用抓斗式或多斗式挖泥船开挖水下沟槽的方法,土方卸在沟槽水流下游一侧,或由驳船运至远处;河床土质松散,可用高压泵船以高压水流冲射水底土层进行开挖 .

用船或其他浮动设备开挖时,挖泥船等应临时锚舶,以保证沟槽中心位置准确。水下沟槽中心线用岸标或浮标显示,并用经纬仪或激光准直仪测量。条件允许时,可在两岸标之间拉设管道中心线,以中心线为准用标尺或锤球可测水下沟槽的位置和槽底高程。

为了防止回淤影响,可以采用分段开挖铺管的施工方法,以缩短水下晾槽时间。

管道的水下铺设

1、浮漂拖航铺管:

浮漂拖航铺管的方法是先在岸边把管子连接成一定长度的管段,管段两端堵板,浮漂拖航到铺管位置,灌水入管,下沉到水底或沟槽内,取下堵板,然后将各管段之间在水下接口。

如果水系较浅,有纵深岸边,岸边与水面高差不大,可在过河管中心延长线的岸边原地面制备管段;或者岸边与水面高差较大,就须开挖岸边,减少与水面高差,并在开挖区内降低地下水位后再制备管段。预制管段用船只或用设在对岸的曳引设备(卷扬机、拖拉机等)浮拖。

但多数情况是岸边预制的管段与水系平行,管段制备后装上浮筒推入水中,在水面上由船浮漂拖航。

管的两端采用法兰盘螺栓堵板。在堵板上设有直径1/2--1的放气孔和进水孔。

管段由水面浮航到沟槽上方,由定位起重船吊放入槽,管段下放到沟槽内。

管段水下定位及接口均由潜水工操作。潜水工用通讯工具与定位起重船联系,调正定位船锚泊位置和船上起重臂操作,使下沉管段与已铺管段对口。

2、水底拖曳铺管

当长度较大的管段采用浮航困难时,可在水底拖曳。拖运时受风浪、潮汐等影响较小,作业安全,不需牵制船,但拖运马力较大。适用与长距离深水铺管,如向海中铺设排污干管。

如管道分段预制,则应在拖曳过程中将管道逐段接口,增长拖曳长度。管道一次拖曳长度可达数十米。

3、铺管船铺管

将管子用运管船运至铺管船上,在铺管船上进行管段接口后,沿铺管船上的滑道、管托架等装置,下入水底。这种方法适用于长距离管段远离岸边的铺管工作。

4、冲沉土层铺管

水底铺设的管段,如采用预先挖沟的方法,管线定位、沟槽准直、沟底平整等质量不易保证。为了避免预先挖沟引起的缺点,可采用冲沉法铺管。

冲沉法铺管是先把管子放在水底,然后用冲泥器把高压水射向管底土层,使管底土液化,丧失承载能力,管道就埋入水底。液化土层的厚度一般为管径的3-4倍。

采用这种方法的前提条件是管底土层为可被液化的。

5、综合作业船铺管

预挖水下沟槽铺管的方法的缺点是沟槽可能发生回淤,弃土和回填土工作量大。为了克服这种缺点,可采用综合作业船铺管。

沟槽由水泵喷射高压水冲挖,挖出的土由砂泵抽升到后部回填沟槽,使沟槽晾槽时间减少至最短,而且取消了回填土的远距离搬运。

根据要求的下沉深度和减少下沉阻力的方法,沉井法分为普通沉井法、震动沉井法和壁后泥浆淹水沉井法等三种:

竖井沉井法掘进普通沉并法

人工挖土门沉井靠自重下沉,井底工作面挖超前降水井。采用这种方法下沉深度小,容易涌砂冒泥和出现井筒偏斜。因此不适用于涌水大的流砂层。

竖井沉井法掘进震动沉井法

在沉井壁上部安装带有震动机的井帽,带动并筒震动促使井壁周围土壤液化,加大下沉的速度和深度。由于动力加载,遇有卵砾石地层时井壁容易断裂。加大沉井荷载的方法,还有附加荷重法和千斤顶顶进法,在不稳定的浅表土层中这两种方法曾得到较广泛应用。

竖井沉井法掘进壁后泥浆淹水沉井法

在沉井内充满水以平衡井内外的水压差,用来防止沉井过程中涌砂冒泥。在沉并壁后空间内充填触变泥浆,起到维护土层的稳定和减少下沉摩擦阻力。淹水沉井的破土方法有:水枪破土、钻机破土和抓斗破土。用压气和提升抓斗排除土碴。水枪破土是借高压水射流破坏土层。钻机破土是借助钻具的重量插人上层将其切割成碎块,泥碴经钻杆排至地表,此法可连续钻进破土,效率高。抓斗即是破土机具也是排碴机具。使破土与排碴结合,效率高,适用于穿过软土层、卵石层和砂层的浅沉井中 。2100433B

对于不同地质条件的地震区域,如断层区、土壤液化区、滑坡地带必须采取不同的管道抗震措施。

断层区的抗震措施 在勘察选线时应首先查清断层所在位置。对于相对位移错动不大的断层,可采用下列方法克服震害:①管道与断层不应平行,并尽可能只相交一次。②薄壁钢管承受拉伸应变的能力比承受压缩应变的能力高数倍。利用薄壁钢管的这个特性,铺设管道时应尽可能使管道的走向同断层错动方向的夹角保持在30°~80°或100°~150°。这样,管道便能在断层错动的过程中承受拉伸应力。③管子覆土厚度以不超过0.9米为宜,以减少断层错动时对管道的作用力,使管道能比较自由地变形,或拱出地面。浅埋在断层两侧的管道,其长度应不少于60米。④增加管的壁厚以提高管道的抗变形能力。直径大于720毫米的管道,壁厚至少为11.5毫米。⑤埋在断层地区的管道应有良好的延性和均匀性,要避免采用不同厚度的管子,还应提高管道焊接的质量要求。⑥在断层两侧的有效锚固点(如固定管墩等)离断层中心应不少于 180米。在可能发生很大相对运动的断层区,除采取上述措施外,还可将埋地管道改为地面敷设或将管道浅埋在中等密度、无粘聚力的回填物(如砂砾石等)中,以减少管道所受的纵向摩擦力和土的侧向压力,以及向上的阻力。如要深埋,则应将管子套在大直径的套管内,并在套管与管道之间充塞可挤压的填充物。

土壤液化区的抗震措施 液化土壤类似一种稠密的粘性液体,对管道有很大的上浮力。一般可采取下列抗震措施:①对沿线土壤进行致密化处理;②把管道埋地敷设改为地上敷设,即把管道架设在支架上;③如果液化土壤的深度不大,可把管道埋在液化层以下的稳定土壤中;④如果管道不得不埋在液化土壤中,则覆盖层厚度应不超过0.9米,或在管道外覆混凝土层,以加重管道,或把管道锚固,以防升起;⑤如果土壤表层稳定而下部有较深的液化层,埋在表层稳定土壤中的管道在地震时会受到严重的破坏,对通过这种地区的管道要采取与通过断层区相同的抗震措施。

滑坡地带的抗震措施 应使管道尽可能地避开滑坡地带。如果必须经过这类地带,可采取纵向挖方的方法,将坡度降低到稳定的坡度。

土壤液化相关推荐
  • 相关百科
  • 相关知识
  • 相关专栏