拓扑结构电源拓扑
随着PWM技术的不断发展和完善,开关电源以其高的性价比得到了广泛的应用。开关电源的电路拓扑结构很多,常用的电路拓扑有推挽、全桥、半桥、单端正激和单端反激等形式。其中, 在半桥电路中,变压器初级在整个周期中都流过电流,磁芯利用充分,且没有偏磁的问题,所使用的功率开关管耐压要求较低,开关管的饱和压降减少到了最小,对输入滤波电容使用电压要求也较低。由于以上诸多原因,半桥式变换器在高频开关电源设计中得到广泛的应用。
开关电源常用的基本拓扑约有14种。
每种拓扑都有其自身的特点和适用场合。一些拓扑适用于离线式(电网供电的)AC/DC变换 器。其中有些适合小功率输出(<200W),有些适合大功率输出;有些适合高压输入(≥220V AC),有些适合120V AC或者更低输入的场合;有些在高压直流输出(>~200V)或者多组(4~5组以上)输出场合有的优势;有些在相同输出功率下使用器件较少或是在器件数与可靠性之间有较好的折中。较小的输入/输出纹波和噪声也是选择拓扑经常考虑的因素。
一些拓扑更适用于DC/DC变换器。选择时还要看是大功率还是小功率,高压输出还是低压输出,以及是否要求器件尽量少等。另外,有些拓扑自身有缺陷,需要附加复杂且难以定量分析的电路才能工作。
因此,要恰当选择拓扑,熟悉各种不同拓扑的优缺点及适用范围是非常重要的。错误的选择会使电源设计一开始就注定失败。
开关电源常用拓扑:
buck开关型调整器拓扑 、boost开关调整器拓扑 、反极性开关调整器拓扑 、推挽拓扑 、正激变换器拓扑 、双端正激变换器拓扑 、交错正激变换器拓扑 、半桥变换器拓扑 、全桥变换器拓扑 、反激变换器 、电流模式拓扑和电流馈电拓扑 、SCR振谐拓扑 、CUK变换器拓扑
开关电源各种拓扑集锦先给出六种基本DC/DC变换器拓扑
依次为buck,boost,buck-boost,cuk,zeta,sepic变换器
树形拓扑的缺点:
各个节点对根的依赖性太大。
星型结构是以一个节点为中心的处理系统,各种类型的入网机器均与该中心节点有物理链路直接相连。星型结构的优点是结构简单、建网容易、控制相对简单。其缺点是属集中控制,主节点负载过重,可靠性低,通信线路利用率...
常见的网络拓扑结构图有一下几种类型:1、星形拓扑 星形拓扑是由中央节点和通过点到到通信链路接到中央节点的各个站点组成。 星形拓扑结构具有以下优点: (1)控制简单。 (2)故障诊断和隔离容易。 (3)...
解放路小学校网络拓朴图:中国北京大学校园网络拓朴图:
电源拓扑结构介绍----正激和反激(第5、6周)
电源节能双管正激拓扑结构的研究 近期令人瞩目的新款航嘉多核 R80 电源,除了集低价、节能、稳定、低噪 音等特点于一身外,令玩家们感兴趣的恐怕还有双管正激这一先进的拓扑架构。 事实上,不但多核 R80 采用双管正激,即将在夏季上市的新版多核 X2、DH8 和 R85、F1 等多核全系列电源也将采用这一先进的技术。此外,台系代工大厂 也在较早前进入了正激时代。采用究竟什么是双管正激,它对消费者来说是喜 还是悲呢? 双管正激和半桥的作用: 无论先进的正激拓扑还是成熟但稍显落后的半桥拓扑,在电源内部中都扮演 开关电路的角色。它的作用是把高压直流电转换为低压直流电(再经过整流滤 波后便是 CPU、硬盘等硬件使用的 5V、 12V 等电流)。我们知道,电源在工 作时其内部会发热,导致电能不能 100%被 CPU 等硬件利用,而电能损耗则主 要发生在开关电路部位。因此,开关电路设计、用料的好坏直接决
光纤接入网的拓扑结构技术是接入网的基本技术之一。所谓拓扑结构,就是把各种结构的网络从几何学的观点进行抽象和概括成一种典型的结构,它反映了网络的物理形状和连接关系。网络的拓扑结构与网络的功能、效率、可靠性以及经济性等因素有直接关系,是网络设计中首先要考虑的问题。
一般来讲,通信网络有三种基本的结构,即星型结构、总线型结构和环型结构。
总线型结构有一条共享主干信道,如图4所示。该信道可使用一根双向传输的光纤线路或两根单向传输的光纤作线路,线路终点不闭合。各个终端用光耦合器互连到共享信道上。采用时分多路、频分多路等方法使各节点共享同一条信道。
总线型网络的主要优点是结构简单,新增或删除节点十分容易,某一个节点功能发生故障时不会影响其他节点,而且共享主干信道使得网络造价相对较低。其缺点在于主干信道本身出现故障时,整个网络的连通性将受到严重损害。
环型结构中所有的节点都公用同一条传输链路,自成一个封闭回路结构,如图5所示。
每个节点仅与两侧的节点相连,可以双向传输业务信号,也可以进行单向传输。环型结构的优点在于:线路自由度和灵活性较高;可以构成各种可靠性很高的自愈环型结构,大大提高了网络的可靠性,网络发生故障后,业务恢复时间极短(不到50ms),对任何业务都无明显影响;利用SDH的同步复用和软件可以灵活方便地安排业务,可望实现按需动态分配网络带宽,适于所有现存的和未来的宽带业务。但是应当注意到,环型结构的可靠性需要线路冗余量。
单星型结构是指每一个ONU分别通过一根或一对光纤与端局的同一OLT直接相连,中间没有光分路器,形成以OLT为中心向四周辐射的星形连接结构,如图6所示。
这种结构的特点是:在每一根光纤连接中都不使用光分路器,对光信号来说是点到点连接配置。这与传统的铜线接入网结构相似。由于这种结构中不使用光分路器,因此,不存在由光分路器引入的光信号衰减,其传输距离要远大于使用光分路器的点到多点的连接配置。
采用单星型结构的主要特点如下:
每一个ONU分别使用一根或一对专用光纤直接与OLT相连,故光纤和O/E设备数量较大,成本较高。
可与原有网络兼容。光缆敷设可走现有电缆管道或线杆。接入网覆盖范围大。
用户之间互相独立,保密性好。
对与某个ONU有关的传输设备进行测试维护时,不会影响其他ONU用户的业务传送。线路没有有源电子设备,为纯无源网络结构,维护工作简单。
易于升级和扩容。改变和增加网络业务容易,因线路设施可以不动,只需更换端局和用户端的相关设备即可。
一个ONU可以只为一个用户服务,也可以为一群用户服务。如果每个ONU服务的用户数越多,则光设备的使用效率越高,每个用户分担的光设备成本则越低。反之,如果每个ONU服务的用户数越少,则每个用户分担的光设备成本越高。因此,从经济性考虑,这种结构仅适用于大单位用户。
双星型是单星型的改进结构。如图7所示为双星型结构,从光线路终端到远端分配单元(RDU)形成一个星型结构光纤连接,从RDU到ONU又形成一个星型结构光纤连接,故称为双星型结构。
它适合于网径更大的范围,在每一条线路中设置远端分配节点。节点越多则表明网络规模越大,节点功能越多则网络性能越佳。远端分配单元主要是将信息分别送人每个用户,并把用户的上行信息集中送入端局。若节点是由无源器件所组成,则称为无源双星型网络,简称双星型。这种网络有许多优点,是采用较多的一种结构。由于远端分配单元将些用户信息流复用后在一根光纤中传输,所以能够作到光、电器件和传输媒介的共享,降低了每个用户的成本;此外,双星型结构维护费用低,使用寿命长,易于扩容升级,业务变化更灵活,能充分利用光纤的带宽。若远端分配单元使用了电复用器(MUX)这一有源电子设备,则称为有源双星型网络。在这个结构中复用器的任务是首先对来自光纤的光信号进行光/电变换,在电信号上对来自与发往不同ONU的信号进行合路与分路,然后再将电信号进行电/光变换,送到相应的光纤上。这样,复用器使得多个ONU可以共享来自端局的馈线光缆及相应设备。
网络拓扑结构混合型
将两种或几种网络拓扑结构混合起来构成的一种网络拓扑结构称为混合型拓扑结构(也有的称之为杂合型结构)。
这种网络拓扑结构是由星型结构和总线型结构的网络结合在一起的网络结构,这样的拓扑结构更能满足较大网络的拓展,解决星型网络在传输距离上的局限,而同时又解决了总线型网络在连接用户数量的限制。这种网络拓扑结构同时兼顾了星型网与总线型网络的优点,在缺点方面得到了一定的弥补。
这种网络拓扑结构主要用于较大型的局域网中,如果一个单位有几栋在地理位置上分布较远(当然是同一小区中),如果单纯用星型网来组整个公司的局域网,因受到星型网传输介质--双绞线的单段传输距离(100m)的限制很难成功;如果单纯采用总线型结构来布线则很难承受公司的计算机网络规模的需求。结合这两种拓扑结构,在同一栋楼层我们采用双绞线的星型结构,而不同楼层我们采用同轴电缆的总线型结构,而在楼与楼之间我们也必须采用总线型,传输介质当然要视楼与楼之间的距离,如果距离较近(500m以内)我们可以采用粗同轴电缆来作传输介质,如果在180m之内还可以采用细同轴电缆来作传输介质。但是如果超过500m我们只有采用光缆或者粗缆加中继器来满足了。这种布线方式就是我们常见的综合布线方式。
点和通信链路,网络中结点的互连模式叫网络的拓扑结构。在局域网中常用的拓扑结构有:星形结构、环形结构、总线型结构,网格型结构。