样本的已知函数;其作用是把样本中有关总体的信息汇集起来;是数理统计学中一个重要的基本概念。统计量依赖且只依赖于样本x1,x2,…xn;它不含总体分布的任何未知参数。
从样本推断总体(见统计推断)通常是通过统计量进行的。例如x1,x2,…,xn是从正态总体N(μ,1)(见正态分布)中抽出的简单随机样本,其中均值(见数学期望)μ是未知的,为了对μ作出推断,计算样本均值。可以证明,在一定意义下,塣包含样本中有关μ的全部信息,因而能对μ作出良好的推断。这里只依赖于样本x1,x2,…,xn,是一个统计量。
统计量是统计理论中用来对数据进行分析、检验的变量。宏观量是大量微观量的统计平均值,具有统计平均的意义,对于单个微观粒子,宏观量是没有意义的.相对于微观量的统计平均性质的宏观量也叫统计量。需要指出的是,描写宏观世界的物理量例如速度、动能等实际上也可以说是宏观量,但宏观量并不都具有统计平均的性质,因而宏观量并不都是统计量。
设x1,x2,…,xn是一个大小为n的样本,对自然数k,分别称 为k阶样本原
点矩和k阶样本中心矩,统称为样本矩。许多最常用的统计量,都可由样本矩构造。例如,样本均值(即α1)和样本方差 是常用的两个统计量,前者反映总体中心位置的信息,后者反映总体分散情况。还有其他常用的统计量,如样本标准差,样本变异系数S/塣,样本偏度,样本峰度等都是样本矩的函数。若(x1,Y1),(x2,Y2),…,(xn,Yn)是从二维总体(x,Y)抽出的简单样本,则样本协方差·及样本相关系数 也是常用的统计量,r可用于推断x和Y的相关性。
把样本X1,x2,…,xn由小到大排列,得到,称之为样本x1,x2,…
,xn的次序统计量。其中最小次序统计量x⑴最大次序统计量x(n)称为极值,在那些如年枯水量、年最大地震级数、材料的断裂强度等的统计问题中很有用。还有一些由次序统计量派生出来的有用的统计量,如:样本中位数 是总体分布中心位置的一种度量,若样本大小n为奇数,,若n为偶数,,它容易计算且有良好的稳健性。样本p分位数Zp(0<p<1)及极差x(n)-x⑴也是重要的统计量。其中Zp当时即为中位数,而当时,表示不超过1 np的最大整数)。样本分位数的一个重要应用是构造连续总体分布的非参数性容忍区间(见区间估计)。
这是W.霍夫丁于1948年引进的,它在非参数统计中有广泛的应用。其定义是:设x1,x2,…,xn,为简单样本,m为不超过n的自然数,为m元对称函数,则称 为样本x1,x2,…,xn的以为核的U统计量。样本均值和样本方差都是它的特例。从霍夫丁开始,这种统计量的大样本性质得到了深入的研究,主要应用于构造非参数性的量的一致最小方差无偏估计(见点估计),并在这种估计的基础上检验非参数性总体中的有关假设。
把样本X1,X2,…,Xn 按大小排列为,若 则称Ri为xi的秩,全部n个秩R1,R2,…,Rn构成秩统计量,它的取值总是1,2,…,n的某个排列。秩统计量是非参数统计的一个主要工具。
还有一些统计量是因其与一定的统计方法的联系而引进的。如假设检验中的似然比原则所导致的似然比统计量,K.皮尔森的拟合优度(见假设检验)准则所导致的Ⅹ统计量,线性统计模型中的最小二乘法所导致的一系列线性与二次型统计量,等等。
可以的,在绘图界面框选,看下面的提示框,应该会有图元数量显示
不能,只能各楼层批量选择需要汇总的构件,查看钢筋量。望采纳
汇总计算后肯定是有的
统计量是由样本加工而成的,在用统计量代替样本作统计推断时,样本中所
含的信息可能有所损失,如果在将样本加工为统计量时,信息毫无损失,则称此统计量为充分统计量。例如,从一大批产品中依次抽出n个,若第i次抽出的是合格品,则xi=0,否则xi=1(i=1,2,…,n)。总体分布取决于整批产品的废品率p,可以证明:统计量,即样本中的废品个数,包含了(x1,x2,…,xn)中有关p的全部信息,是一个充分统计量。若取m<n,令Tm(x1,,则Tm仍是一个统计量,不过不是充分的。
充分性是数理统计的一个重要基本概念,它是R.A.费希尔在1925年引进的,费希尔提出,并由J.奈曼和P.R.哈尔莫斯在1949年严格证明了一个判定统计量充分性的方法,叫因子分解定理。这个定理适用面广且应用方便,利用它可以验证很多常见统计量的充分性。例如,若正态总体有已知方差,则样本均值塣是充分统计量。若正态总体的均值、方差都未知,则样本均值和样本方差S合起来构成充分统计量(塣,S)。一个统计量是否充分,与总体分布有密切关系。
将样本加工成统计量要求越简单越好。简单的程度的大小,主要用统计量的维数来衡量。简单地讲,若统计量T2是由统计量T1加工而来(即T2是T1的函数),则T2比T1简单。在此意义上,最简单的充分统计量叫极小充分统计量。这是E.L.莱曼和H.谢菲于1950年提出的。前例中的充分统计量都有极小性。在任何情况下,样本x1,x2,…,xn本身就是一个充分统计量,但一般不是极小的。
关于统计量的另一个重要的基本概念是完全性。设T为一统计量,θ为总体分布参数,若对θ的任意函数g(θ),基于T的无偏估计至多只有一个(以概率1相等的两个估计量视为相同),则称T为完全的。
统计量的分布叫抽样分布。它与样本分布不同,后者是指样本x1,x2,…,xn的联合分布。
统计量的性质以及使用某一统计量作推断的优良性,取决于其分布。所以抽样分布的研究是数理统计中的重要课题。寻找统计量的精确的抽样分布,属于所谓的小样本理论(见大样本统计)的范围,但是只在总体分布为正态时取得比较系统的结果。对一维正态总体,有三个重要的抽样分布,即Ⅹ分布、t分布和F分布。
Ⅹ分布 设随机变量x1,x2,…,xn是相互独立且服从标准正态分布N(0,1),则随机变量的分布称为自由度为n的Ⅹ分布(其密度函数及下文的t分布、F分布的密度函数表达式均见概率分布)。这个分布是 F.赫尔梅特于1875年在研究正态总体的样本方差时得到的。若x1,x2,…,xn是抽自正态总体N(μ,σ)的简单样本,则变量服从自由度为n-1的Ⅹ分布。若x1,x2,…,xn服从的不是标准正态分布,而依次是正态分布N(μi,1)(i=1,2,…,n),则的分布称为非中心Ⅹ分布,称为非中心参数。当δ=0时即前面所定义的Ⅹ分布。为此,有时也称它为中心Ⅹ分布。中心与非中心的Ⅹ分布在正态线性模型误差方差的估计理论中,在正态总体方差的检验问题中(见假设检验),以及一般地在正态变量的二次型理论中都有重要的应用。
t分布设随机变量ξ,η独立,且分别服从正态分布N(δ,1)及自由度n的中心Ⅹ分布,则变量的分布称为自由度n、非中心参数δ的非中心t分布;当δ=0时称为中心t分布。若x1,x2,…,xn是从正态总体N(μ,σ)中抽出的简单样本,以塣记样本均值,以记样本方差,则服从自由度n-1的t分布。这个结果是英国统计学家W.S.戈塞特(又译哥色特,笔名“学生”)于 1908年提出的。t分布在有关正态总体均值的估计和检验问题中,在正态线性统计模型对可估函数的推断问题中有重要意义,t分布的出现开始了数理统计的小样本理论的发展 。
深基坑 基坑工程简介: 基坑工程主要包括基坑支护体系设计与施工和土方开挖,是一项综合 性很强的系统工程。它要求岩土工程和结构工程技术人员密切配合。基坑 支护体系是临时结构,在地下工程施工完成后就不再需要。 基坑工程具有以下特点: 1)基坑支护体系是临时结构,安全储备较小,具有较大的风险性。基 坑工程施工过程中应进行监测,并应有应急措施。在施工过程中一旦出现 险情,需要及时抢救。 2)基坑工程具有很强的区域性。如软粘土地基、黄土地基等工程地质 和水文地质条件不同的地基中基坑工程差异性很大。同一城市不同区域也 有差异。基坑工程的支护体系设计与施工和土方开挖都要因地制宜,根据 本地情况进行,外地的经验可以借鉴,但不能简单搬用。 3)基坑工程具有很强的个性。基坑工程的支护体系设计与施工和土方 开挖不仅与工程地质水文地质条件有关,还与基坑相邻建(构)筑物和地 下管线的位置、抵御变形的能力、重要性,以
图形的定义 :区别于标记、标志与图案,他既不是一种单纯的符号,更不是单 一以审美为目的的一种装饰, 而是在特定的思想意识支配下的多某一个或多个视 觉元素组合的一种蓄意的刻画和表达形式。 它是有别于词语、 文字、语言的视觉 形式,可以通过各种手段进行大量复制,是传播信息的视觉形式。 图形的特征 :图形设计范围极为广泛,它覆盖着艺术造型、涉及思维、语言符 号、心理研究、大众传播、市场经营等方面的知识。 图形设计的基本特征概括起来大致有几个方面: 独特性 文化性 单纯性 认同性 象征性 传达性 图形的历史与发展 :图形的发展与人类社会的历史息息相关。 早在原始社会, 人类就开始以图画为手段,记录自己的理想、活动、成就,表达自己的情感,进 行沟通和交流。 当时绘画的目的并非是为了欣赏美, 而是有表情达意的作用, 被 作为一种沟通交流的媒介,这就成为最原始意义上的图形。 在人类社会的语言期与文字期中
斑砂岩统(Buntsandsteinian Series)是德国陆相下三叠统的专名。斑砂岩统是以岩性取名。它为大陆或潟湖相沉积,岩性主要为红色或淡紫色砾岩、砂岩或页岩。上部出现海相沉积,含有双壳类Myophoria等。
统威致力于打造优质产品、不断追求创新,力求给人们带来更舒适更优质的生活便捷!
品牌注册地址:湖北省武汉市洪山区雄楚大道杨家湾549号尚文创业城2-1-1005室
品牌线:统威
申请号/注册号:28133698
类号:7
商标名称:统威