1、选择节能、高产的破碎设备
2、选择节能、高产的磨矿设备
3、提高精矿粉磨后的分级性能,减少过磨现象,提高精矿粉品位
这是所有品质指数中最重要的,60%以上含量的一般被认为是高品位的,我国就严重缺乏这种高品位铁矿石,几乎依赖从巴西、澳大利亚、印度进口。
有害成分主要包括硫、磷、二氧化硅、三氧化二铝等等,这个含量越低意味着矿石越好,越容易冶炼。
该指数仅局限于未烧结的铁矿砂,是指矿砂颗粒的品均直径。一般经过粉碎在5-10毫米最佳,过大过小都不好,既不方便运输也不利于生产。
为了方便运输,所有成品铁矿砂都必须在装船装车运输前接受注水。一般含水率在8%以下。于是铁矿砂和其他矿石同类产品都有干、湿两种几种方式,干重用于计算货物单位货值,湿重用于计算运输费用。
球团矿作为高炉炉料结构的主要组成部分,其性能的优劣直接影响高炉冶炼以至整个钢铁生产。良好的铁精矿成球性能是生产优质球团矿的基础和前提。随着中国铁矿资源的消耗日趋增大,大量贫矿和复杂矿的使用,使铁精矿的成球性能呈现出不同程度的下降,对整个球团工业造成了重大影响。围绕如何有效利用资源,改善铁精矿成球性能,国内已经开展了一些研究。其中,黄柱成和肖炸和等人分别研究了混合料预处理和配矿对铁精矿成球性能的改善作用,但由于铁精矿成球性能受自身性质和粘结剂的影响很大,国内尚缺乏全面而系统的研究 。
为了更好地了解10 种精矿的成球性能,试验以1号膨润土为粘结剂,研究各单一铁精矿对膨润土用量、造球水分、造球时间的要求。各铁精矿的成球性能差异明显。①矿、⑥矿、⑦矿和⑧矿4 种铁精矿要达到较好的造球效果,需将膨润土用量提高到2 .0 %以上。这主要是因为:①矿虽粒度较细,但由于颗粒形貌比较均一,微细粒级含量较少,成球性能差(成球性指数K 值为0 .08);⑥矿、⑦矿和⑧矿的粒度较粗,也导致三者的成球性能较差。③矿和④矿成球性能相对较好,但膨润土用量仍然偏高(分别为1.90 %和1 .75 %)。其中,③矿粒度细微,粒级中<0.074 mm 含量达92 .1 %,在粒度组成上满足生产要求(适宜铁精矿<0 .074 mm 粒级含量一般为80%~85%左右),但由于其属浮选尾矿,表面上残留的浮选药剂导致其亲水性能差(试验测得其最大分子水仅为1 .29 %,静态成球性指数K 值为0 .09),成球性相应也较差。④矿由于粒度偏粗,其成球性能同样不好。
总体而言,10 种铁精矿中只有②矿、⑤矿、⑨矿和⑩矿(⑩矿大颗粒较多,但其颗粒形貌及粒度组成相对较好 。
铁精矿本身的性质(如粒度及粒度组成、颗粒形貌、孔隙度、亲水性)和粘结剂是影响铁精矿成球性能的两大因素。针对10 种铁精矿,为改善铁精矿成球性能,试验从优化原料结构、原料预处理、改善粒度组成和合理选择膨润土种类及用量四个方面展开了研究。
单一铁精矿亲水性能较差(如③矿,其最大分子水仅为1 .29 %)、粒度组成不一或粒度过粗(如⑥矿、⑦矿)、颗粒形貌单一(如①矿),都将对铁精矿的成球性能产生不利影响。优化原料结构实质上就是以不同矿种的相互搭配,以达到改善铁精矿上述性质的作用。为此,在考虑原料结构的组成上,除保留方案1 中的①矿以作对比外,试验剔除了成球性能较差的几种铁精矿(如①矿、⑥矿、⑦矿、⑧矿等),并以1 号膨润土为粘结剂,研究了4 种原料结构对生球质量的影响。
通过优化原料结构,膨润土用量可由1 方案所需的2 .5 %大幅下降到1 .0 %,爆裂温度提高约200 ℃。这表明,通过不同矿种之间的优化配置和合理搭配,能大幅度降低膨润土用量,稳定生球质量,改善铁精矿的成球性能。
铁精矿颗粒的形状,决定了颗粒表面积和在生球内原料颗粒间接触面积的大小及相互嵌入的紧密程度,对铁精料的成球性能的影响很大。通过强化预处理工艺来改善铁精矿颗粒形貌对铁精料的成球性能影响非常明显。试验研究了高压辊磨和润磨这两种预处理方式对铁精矿成球性能的影响。经高压辊磨和润磨后的铁精矿成球性能获得明显改善,这主要得益于预处理(如采用高压辊磨)可一定程度地改变颗粒的表面形态,增加物料颗粒间的接触面及粒子表面结合力,使隔离分散的颗粒更加紧密的粘结,提高充填密度,最终达到提高原料成球性的良好效果。
铁精矿粒度和粒度组成是影响铁精矿成球性能的重要因素之一。适宜的粒度组成可以提高原料中的毛细作用力,使生球的强度变好,直接影响原料的成球性。一般情况下可以利用磨矿操作来改善和调整铁精矿的粒度组成,形成良好的颗粒搭配,提高原料的成球性能。由于适宜铁精矿<0 .074 mm粒级含量一般要求为80 %~ 85 %左右,而⑩矿的粒度过粗,粒级中<0 .074 mm 含量仅为46 .4 %,试验以⑩矿为例,研究了配加磨矿后不同<0 .074 mm粒级含量的该矿对配矿方案4 生球质量的影响。:随着配入的铁精⑩矿中的<0 .074 mm 粒级含量提高,生球质量明显改善。当⑩矿中<0 .074 mm 粒级含量由46 .4 %提高到81 .9 %后,该矿的<0 .045 mm 粒级含量相应地由30 .9 %提高到44 .3 %,生球落下强度从3 .4 次/0 .5 m 提高到5 .8 次/0 .5 m ,抗压强度也有所提高。这充分说明,为获得合适的铁精矿粒度,调整粒度组成,适当增加细粒级含量有助于改善铁精矿的成球性能。
由于膨润土对不同铁精矿的适应性差异较大,同时由于膨润土经过焙烧之后残余部分主要成分是SiO2 、Al2O3 ,将降低球团矿的有效成分的含量(铁品位),这就要求球团生产中合理选择膨润土种类并尽量降低其用量。为充分和准确地研究膨润土与铁精矿之间的关系,试验研究了膨润土的种类和用量对方案2 生球质量的影响,以反映膨润土的选择对铁精矿成球性能的影响情况。
对于同一配矿方案,随着膨润土用量的上升,粘结作用增强,生球落下强度提高,生球爆裂温度逐渐下降。从生球落下强度考虑,1号、2 号和3 号三种膨润土的适宜用量分别为1.5 %、1 .0 %和1 .0 %。就抗压强度而言,3 种膨润土差异不大。但从生球爆裂温度方面来看,由于配加3 号膨润土的生球爆裂温度较低,这显然是不适宜的。导致使用3 号膨润土生球爆裂温度较低的原因主要在于其吸水率大,吸水能力强,虽造球后生球因塑性增强,生球落下强度提高,但对生球的爆裂温度会产生不利影响。因此,合理选择膨润土的种类和用量,就显得尤为重要。研究表明,在尽可能降低膨润土用量和保证球团性能的前提下,通过对生球性能指标的综合考虑,选择在铁精矿中配加用量为1.0 %的2 号膨润土能最有效地改善铁精矿的成球性能。
(1)单一铁精矿成球性能试验结果表明,10 种单一铁精矿的成球性能差异明显。铁精矿本身的性质(如粒度及粒度组成、颗粒形貌、孔隙度、亲水性)和粘结剂是影响铁精矿成球性能的两大因素。
(2)通过对影响铁精矿成球性能主要因素的分析,研究了改善铁精矿成球性能的措施。试验结果表明,通过优化原料结构,进行配矿处理、改善铁精矿粒度组成、对铁精矿采用高压辊磨和润磨预处理、合理选择膨润土的种类和用量等措施能大幅度提高生球质量,改善铁精矿的成球性能 。2100433B
针对庙沟铁矿铁精矿品位低、SiO_2含量高的特点,研究提铁降硅工艺,采用三段磨矿、两段MVS细筛分级、两次磁场筛选机精选、磁筛中矿采用细筛再磨工艺单独处理的新工艺,取得了较好的指标。
提高品位 塑造特色 建设生态园林城市
由铁精矿流态化的宏观规律分析可知,水分的迁移对铁精矿的流态化发生至关重要.利用高速细观摄像机采集的铁精矿流态化演化过程中的细观变化.细观观测位置为距离模型箱底部30cm、短边侧壁33cm 处,观测范围为6mm×8mm.通过对不同振次时铁精矿细观照片的直观分析,研究散装铁精矿流态化演化过程中水分在铁精矿颗粒间迁移运动的细观规律。
试验开始前,不同粒径铁精矿颗粒均匀分布,矿体相对比较松散,粒间孔隙体积较大,水分均匀分布在铁精矿颗粒间孔隙中;振动开始后,矿体体积被压缩,孔隙体积减小,孔隙中均匀分布的水分逐渐聚集,形成水膜裹附在铁精矿颗粒表面;孔隙体积进一步减小,颗粒表面的包裹水膜厚度增加,水分汇集连接成片,形成连续水体,观测到铁精矿孔隙体积明显减小;随着孔隙水分的进一步析出,细观观测区域内的铁精矿水分含量增多,矿体饱和度增大,颗粒间作用力降低,观测区域内的连续水体与铁精矿颗粒共同做水平往复运动。
振动至40振次时,细观观测区域内的细颗粒含量明显减少,颗粒间接触紧密,观测区域内水分含量减少,这是因为水分在迁移过程中带动细颗粒一起运动,细颗粒流失后矿体粒径粗化;振动至60振次时,孔隙间析出水继续迁移,析出水量逐渐减小,此时由宏观观测到的水液面已上升至细观观测区域的位置;振动至100振次时,析出水量逐渐减小;振动至600振次时,铁精矿细颗粒嵌合在粗颗粒孔隙间,颗粒间咬合紧密,矿体孔隙体积很小,颗粒间剩余水分含量很少。
在缩尺条件下,散装铁精矿流态化形成的水分迁移细观规律大致相同.在振动过程中,铁精矿体积被压缩;颗粒孔隙间水分被挤出并汇集成片,形成连续水体;水分在重力作用下向下迁移,其宏观表现为形成水液面上升.同时孔隙水迁移带动矿体中细颗粒运动,细颗粒填充了粗颗粒骨架之间的孔隙,进一步促使孔隙体积减小,导致孔隙水分析出。
研究铁精矿细观组构的目的是通过对颗粒间相互作用的定量描述,在某种假设或力学原理的基础上做出统计平均,建立铁精矿细观组构指标与铁精矿宏观特性响应间的关系.本文通过模型试验对铁精矿流态化形成过程中的宏观现象和组构参量之间的关系进行了定性探讨,尝试从铁精矿细观组构的演化解释铁精矿流态化现象的细观机制。
利用课题组自主开发的Geodip数字图像处理软件,对试验过程中记录的高清照片进行处理,分析铁精矿在循环荷载作用下颗粒细观组构变化,包括铁精矿颗粒长轴方向,平均接触数和平面孔隙率的变化等.通过对比在流态化形成过程中不同振次下铁精矿颗粒的细观组构规律,探讨铁精矿发生流态化的内在机理。
(1)颗粒长轴方向
颗粒定向性的发展是流态化形成过程中铁精矿颗粒重新排列的反映。不同振次时铁精矿颗粒长轴方向演化的玫瑰图,扇形大小反映颗粒长轴方向的角度频数分布。
从长轴方向的演化来看,由于采用分层湿捣法进行制样,因此试样的铁精矿颗粒长轴方向分布相对比较均匀。振动初始,由于不规则形状的铁精。铁精矿颗粒孔隙间水分不断汇集形成连续水体,由于同时受到水平往复荷载和水流的作用,铁精矿颗粒长轴主要分布在水平0°方向和竖直90°方向。随着水平荷载的继续施加,孔隙间水分携带部分细颗粒趋于向矿体上层迁移,颗粒长轴明显偏向于竖直方向发展。约至50振次时,铁精矿颗粒间孔隙充分压缩,粒间孔隙中的水分已充分析出,颗粒间残存少量水分,水流作用减弱,原来受水流影响偏向竖向的颗粒长轴稍微向水平方向偏转。至60振次时,细观拍摄处的铁精矿颗粒主要受到水平往复荷载的作用,颗粒的长轴继续向水平方向发展,宏观上的表现为水液面迁移至矿粉表面、流态化基本完成;待振动结束时,铁精矿骨架相对稳定,颗粒只是在原位附近轻微错动和旋转,并没有明显的颗粒滚动,长轴方向变化不大。
综上所述,在铁精矿流态化形成演化过程中,由于受到水平往复荷载和水流的综合作用,颗粒长轴方向由初始的均匀分布变化到定向分布,并且偏向于竖直方向和水平方向.颗粒长轴方向的演化过程,反映了在流态化形成过程中铁精矿颗粒的重新排列过程。
(2)平均接触数
平均接触数是指颗粒与周围颗粒接触的平均数目,用以分析颗粒运动和重新排列规律,其变化是颗粒受力变化的间接反映。
振动初期,铁精矿体积轻微压缩,铁精矿颗粒平均接触数略微增多;至10~20振次,颗粒间的运动使得铁精矿平均接触数略有下降,这表明颗粒间孔隙中水形成的水膜包裹了铁精矿颗粒;至20~40振次,颗粒在水流和振动荷载的作用下,平均接触数目上下波动;至40振次以后,铁精矿颗粒的平均接触数逐渐增大,这说明颗粒间孔隙压缩充分,铁精矿越来越密实。
总体而言,铁精矿平均接触数的总体趋势是增大的,其反映的规律与铁精矿孔隙率变化规律基本一致,即流态化演化过程中铁精矿颗粒的运动使得铁精矿总体发生压缩,粒间孔隙中的水分得以挤出并向上迁移,这与宏观流态化现象得到的结论一致。需指出,平均接触数是通过统计颗粒与其周边颗粒的平均接触数来反映土体的紧密程度,其值并不是衡量颗粒间作用力的指标.
(3)平面孔隙率
利用Geodip程序计算得到的颗粒孔隙率随时间的变化曲线.需要说明的是,这里采用的平均孔隙率为平面孔隙率,而并非铁精矿真实孔隙率。
水平荷载的施加,使得铁精矿颗粒间孔隙发生压缩,孔隙体积缩小;从振次10开始,平面孔隙率经历有升有降的波动,总的趋势是减小的,这是由于铁精矿颗粒受水平荷载和水流冲力的共同作用,颗粒发生旋转、错动和移动,但颗粒孔隙仍被压缩;至振次60以后,孔隙率基本不发生波动,且远远小于初始值.总体而言,铁精矿流态化形成过程中,孔隙率呈减小趋势,在最初20振次内尤为明显,这与试样总体发生压缩的宏观现象一致 。
铁精矿球团烘干机是一种处理大量物料的干燥设备,运转可靠,操作弹性大,适应性强,处理能力大,物料的适应性强,可以烘干各种物料,且设备操作简单可靠。广泛用于建材,冶金、化工、水泥工业烘干铁精矿球团、矿渣、石灰石、煤粉、矿渣、粘土等物料。尤其针对铁精矿球团、矿渣、矿浆效果更加明显.
1. 铁精矿球团烘干机烘干机处理能力大,燃料消耗少,干燥成本低。
2. 铁精矿球团烘干机具有耐高温的特点,能够使用高温热风对物料进行快速烘干。
3.可扩展能力强,设计考虑了生产余量,即使产量小幅度增加,也无需更换设备。
4. 设备采用调心式拖轮结构,拖轮与滚圈的配合好,大大降低了磨损及动力消耗。
5.专门设计的挡轮结构,大大降低了由于设备倾斜工作所带来的水平推力
6. 抗过载能力强,筒体运行平稳,