非晶合金,或称为金属玻璃,它是20世纪70年代问世的一种新型材料,是利用急冷技术,将钢液一次成型为厚度为30微米的薄带,得到的固体合金(薄带)是不同于冷轧硅钢材料中原子规则排列的晶体结构,正是这种合金其原子处于无规则排列的非晶体结构,使其具有狭窄的B-H回路,具有高导磁性和低损耗的特点;同时非晶合金原子排列的不规则限制了电子的自由通行导致电阻率比晶体合金高出2-3倍,这样也有利于减少涡流损耗。以非晶合金为原料制成的变压器铁心,其空载损耗与采用硅钢片的传统变压器相比,减少了75%左右,使非晶合金变压器具有十分显著地节能和环保效果,当非晶合金变压器铁心用于油浸变压器时,可明显减排多种有害气体。所以,越来越多的生产厂商采用非晶合金来作为变压器铁心的原材料。
中文名称 | 铁基非晶合金 | 饱和磁感(T) | 1.56 2.03 |
---|---|---|---|
矫顽力 | (A/m) <4 <30 | 作用 | 替代硅钢片 |
替代硅钢片,作为工频配电变压器铁芯
中频变压器铁芯(400Hz-15KHz)
环形滤波电感、开口电感铁芯(15kHz以下)
大功率开关电源、电抗器铁芯
饱和电抗器、脉冲压缩器铁芯
表1 铁基非晶合金的物理性能(国标牌号1K101)
饱和磁感应强度Bs 1.56T 硬度Hv> 960
居里温度Tc 410°C 密度d 7.18g/cm3
晶化温度Tx 550°C 电阻率r 130Wm-cm
饱和磁致伸缩系数ls 27´10-6 热膨胀系数Dl/l
表2 铁基非晶合金的典型磁性能
产品类型 横向磁场退火 无磁场退火 纵向磁场退火
最大导磁率 >2x104 >20´104 >25´104
饱和磁感应强度 1.5 T 1.5 T 1.5 T
剩余磁感应强度 <0.5 T 0.5-1.0 T 1.2 T
矫顽力 <4A/m <2.4 A/m <4A/m
损耗(50Hz, 1.4T) <0.2W/kg <0.13W/kg <0.3W/kg
损耗(400Hz, 1.2T) <1.8W/kg <1.25W/kg <2W/kg
损耗(8kHz, 1.0T) <80W/kg <60W/kg <100W/kg
铁损变化率(-55°C -125°C) <15% <15% <15%
铁损变化率(120°C´200小时) <15% <15% <15%
注:上述数据为非晶带材经过最佳热处理后的磁性能,但并不代表铁芯的最终性能。当带材制造成铁芯时,由于具体情况发生某些性能变化属正常现象。
表3 铁基非晶合金与硅钢片的磁性能对比
性能指标 铁基非晶合金 硅钢
饱和磁感(T) 1.56 2.03
矫顽力(A/m) <4 <30
最大磁导率 (Gs/Os) 45×104 4×104
铁损(W/kg) 50Hz,1.3T下<0.2 50Hz, 1.7T下=1.2
激磁功率(VA/kg) 50Hz,1.3T下<0.5 50Hz, 1.7T下<0.83
叠片系数 >0.80 0.95
磁致伸缩(>´10-6) 27 -
电阻率(>mW-cm) 130 45
比重(g/cm3) 7.18 7.65
晶化温度(℃) 550 -
居里温度(℃) 415 746
抗拉强度(Mpa) 1500 343
维氏硬度(HV) 900 181
厚度(μm) 30 300
铁基非晶带材常用磁性能曲线
产品规格
产品牌号 带材宽度 mm 带材厚度μm
RF1-0050 5±0.2 27±3
RF1-0080 8±0.2 27±3
RF1-0100 10±0.5 27±3
RF1-0150 15±0.5 27±3
RF1-0200 20±1 27±3
RF1-0250 25±1 27±3
RF1-0300 30±1 27±3
RF1-0400 40±1 27±3
RF1-0500 50±1 27±3
RF1-0700 70±1 27±3
RF1-1000 100±1 27±3
RF1-1500 150±1 27±3
RF1-1700 170±1 27±3
RF1-2200 220±1 27±3
非晶合金,或称为金属玻璃,它是20世纪70年代问世的一种新型材料,是利用急冷技术,将钢液一次成型为厚度为30微米的薄带,得到的固体合金(薄带)是不同于冷轧硅钢材料中原子规则排列的晶体结构,正是这种合金其原子处于无规则排列的非晶体结构,使其具有狭窄的B-H回路,具有高导磁性和低损耗的特点;同时非晶合金原子排列的不规则限制了电子的自由通行导致电阻率比晶体合金高出2-3倍,这样也有利于减少涡流损耗。以非晶合金为原料制成的变压器铁心,其空载损耗与采用硅钢片的传统变压器相比,减少了75%左右,使非晶合金变压器具有十分显著地节能和环保效果,当非晶合金变压器铁心用于油浸变压器时,可明显减排多种有害气体。所以,越来越多的生产厂商采用非晶合金来作为变压器铁心的原材料。
铁基非晶合金(Fe-based amorphous alloys)铁基非晶合金是由80%Fe及20%Si,B类金属元素所构成,它具有高饱和磁感应强度(1.54T),磁导率、激磁电流和铁损等各方面都优于...
通常金属材料在固态下都是晶体,但是在金属材料结晶过程中采用特殊方法可以打乱金属材料原子的规则排列,得到原子排列混乱的固态金属材料,称其为非晶金属材料。非晶合金就是非晶金属材料里的一种。
1960年美国Duwez教授发明用快淬工艺制备非晶态合金为始。其间,非晶软磁合金的发展大体上经历了两个阶段:第一个阶段从1967年开始,直到1988年。1984年美国四个变压器厂家在IEEE会议上展示...
非晶合金变压器技术规范书 第一部分 工程要求 目 录 1. 概述 2. 供货及服务内容 3. 技术服务要求 1. 概述 1.1 本部分为河南移动三门峡分公司购买所需非晶合金电力变压器招标文件的 工程要求部分。 1.2 报价的设备必须符合本招标书技术要求部分的所有要求, 如有异于技术部分 的地方应论述其理由。 1.3 投标方应用中文提供满足本文件要求的详细建议书。 建议书必须对本文件技 术要求逐条明确应答。如果有必要,可给出详细的技术数据。 2. 供货及服务内容 2.1 本工程采购 2台 1600kVA 非晶合金电力变压器。 2.2 设备采购具体技术要求见标书技术要求部分。 2.3 要求投标方为本工程提供至少以下技术服务: ,, 设备安装督导和验收测试; ,, 工厂检验; ,, 培训; ,, 供电部门图纸审查。 3. 技术服务要求 3.1 投标方安装督导和验收测试 3.1.
研究的反激变压器工作在20 kHz高频开关模式,首先应考虑选用软磁铁氧体、铁基非晶合金和金属磁粉芯等适于高频条件下工作的磁芯材料。对比列出了市场上典型的R2KB型MnZn功率铁氧体、1K101铁基非晶合金和FeSiAI磁粉芯等三种磁芯材料的性能参数。铁基非晶合金磁芯一般采用约30 mm厚且宽度最大不超过300 mm的薄带材叠层绕制而成,常见的磁芯型式为环形或矩形拼接式。 设计变压器磁芯结构为带集中切口气隙的跑道环形磁芯。该结构在磁芯的一侧芯柱集中开有气隙,而在对侧芯柱同心绕制高、低压绕组,采用气隙与绕组分开布置的方式可有效减小气隙边缘效应以优化绕组磁密分布。通过计算分析 的具体磁芯参数,磁芯采用宽度70 mm的带材绕制,绕制厚度60mm磁芯结构宽度190 mm和绕组窗口宽度70 mm。绕组窗口长度lW和切口气隙长度鬼为待设计参数,二者需在绕组结构设计的基础上确定。
一种高、低压绕组在单侧磁柱上同心绕制的绕组结构。绕制过程中高、低压绕组均采用单层绕法且通过绕组参数设计保证绕制长度相等。该结构可有效减小绕组端部边缘效应和绕组间漏感。根据绕组间绝缘要求,在低压绕组与磁芯间以及高、低压绕组之间分别设置厚2mm和8mm的固体绝缘层。
非晶软磁合金材料的种类:
1、铁基非晶合金铁基非晶合金:主要元素是铁、硅、硼、碳、磷等。它们的特点是磁性强(饱和磁感应强度可达1.4-1.7T)、磁导率、激磁电流和铁损等软磁性能优于硅钢片,价格便宜,最适合替代硅钢片,特别是铁损低(为取向硅钢片的1/3-1/5),代替硅钢做配电变压器可降低铁损60-70%。铁基非晶合金的带材厚度为0.03毫米左右,广泛应用于中低频变压器的铁心(一般在10千赫兹以下),例如配电变压器、中频变压器、大功率电感、电抗器等。
2、铁镍基非晶合金铁镍基非晶合金:主要由铁、镍、硅、硼、磷等组成,它们的磁性比较弱(饱和磁感应强度大约为1T以下),价格较贵,但磁导率比较高,可以代替硅钢片或者坡莫合金,用作高要求的中低频变压器铁心,例如漏电开关互感器。
3、钴基非晶合金钴基非晶合金:由钴和硅、硼等组成,有时为了获得某些特殊的性能还添加其它元素,由于含钴,它们价格很贵,磁性较弱(饱和磁感应强度一般在1T以下),但磁导率极高,一般用在要求严格的军工电源中的变压器、电感等,替代坡莫合金和铁氧体。
4、纳米(超微晶)软磁合金材料由于非晶合金中原子的排列是混乱无序的这种特殊结构,使得非晶合金具有一些独特的性质。
铁基非晶合金(Fe-based amorphous alloys)
特别是铁损低(为取向硅钢片的1/3-1/5),代替硅钢做配电变压器可节能60-70%。铁基非晶合金的带材厚度为0.03mm左右,广泛应用于配电变压器、大功率开关电源、脉冲变压器、磁放大器、中频变压器及逆变器铁芯, 适合于10kHz 以下频率使用
由于超急冷凝固,合金凝固时原子来不及有序排列结晶,得到的固态合金是长程无序结构,没有晶态合金的晶粒、晶界存在,称之为非晶合金,被称为是冶金材料学的一项革命。这种非晶合金具有许多独特的性能,如优异的磁性、耐蚀性、耐磨性、高的强度、硬度和韧性,高的电阻率和机电耦合性能等。由于它的性能优异、工艺简单,从80年代开始成为国内外材料科学界的研究开发重点。
在以往数千年中,人类所使用的金属或合金都是晶态结构的材料,其原子三维空间内作有序排列、形成周期性的点阵结构。
而非晶态金属或合金是指物质从液态(或气态)急速冷却时,因来不及结晶而在室温或低温保留液态原子无序排列的凝聚状态,其原子不再成长程有序、周期性和规则排列,而是出于一种长程无序排列状态。具有铁磁性的非晶态金合金又称铁磁性金属玻璃或磁性玻璃(Glassy Alloy),为了叙述方便,以下均称为非晶态合金。