中文名 | 调节抽汽式汽轮机 | 外文名 | regulatedextractionsteamturbine |
---|---|---|---|
应用学科 | 电力 | 领 域 | 工业 |
学 科 | 电力工程 |
1.动力特性
一次调节抽汽式汽轮机,又称单抽汽供热式汽轮机,由高压段和低压段组成,相当于1台背压式汽轮机与1台凝汽式汽轮机的组合。新蒸汽进入高压段做功,膨胀至一定压力后分为2股,1股抽出供给热用户,另1股进入低压部分继续膨胀做功,最后排入凝汽器。
单抽汽式汽轮机的功率为高﹑低压段所产生的功率之和,由汽轮机进汽量和流经低压段的蒸汽流量决定。调节进汽量可以得到不同的功率,因此,在一定范围内可同时满足热﹑电负荷的需要。
2.汽耗特性
单抽汽式汽轮机在供热抽汽量为零时,相当于1台凝汽式汽轮机;理论上若将进入高压缸的蒸汽全部抽出供给热用户,则相当于1台背压式汽轮机。但在实际运行中,为了冷却低压缸,带走由于鼓风摩擦损失所产生的热量,必须有一定量的蒸汽流过低压段而进入凝汽器,所需最小流量约为低压缸设计流量的5%~10% 。
对于一次调节抽汽式汽轮机来讲,在某给定外界热负荷时,通过调节汽轮机的进汽流量可以改变汽轮发电机的输出功率,因而电负荷可以在一定范围内上、下变动,依据供热汽轮机的工况图可以从理论上确定这个范围。
1.最大输出功率的确定
在保持外界热负荷稳定不变的情况下,汽轮发电机的最大输出功率首先受到汽轮机最大进汽流量以及发电机最大出力的限制,而汽轮机进汽量主要受高压段通流能力以及所对应锅炉最大蒸发量的制约,此时只需要在工况图上查出抽汽流量De线与汽轮机最大进汽量DImax线的交点,该交点所对应的电功率值即为该供热负荷下汽轮发电机能发出的最大功率;如果该抽汽流量De线与汽轮机最大进汽量DImax 线不能相交,那么它一定与汽轮发电机的最大出力Pelmax线相交,此时该交点所对应的电功率值即为该供热负荷下汽轮发电机能发出的最大功率。
2.最小输出功率的确定
在保持外界热负荷稳定不变的情况下,汽轮发电机的最小输出功率首先受到最小凝汽量DⅡmin工况线的限制,用以冷却低压缸由于摩擦鼓风损失所带来的热量,保证汽轮机的安全稳定运行;其次受到汽轮机最小进汽量的限制,即该汽轮机所对应锅炉的最低稳燃蒸发量DImin 。
汽轮机的进汽量大于锅炉的最低稳燃蒸发量DImin时,抽汽流量De 线与最小凝汽量DⅡmin工况线的交点所对应的电功率即为汽轮机所能带的最小功率。汽轮机的进汽量等于锅炉的最低稳燃蒸发量DImin(平行于电功率Pel坐标轴) 时,抽汽流量De线与最低稳燃蒸发量DImin线的交点所对应的电功率即为汽轮机所能带的最小功率。
在得到供热汽轮机最大和最小输出功率的基础上,为了使结果合理并能应用于实际,可以通过热力性能试验的方法对该结论进行验证和修正 。
由于国家大力发展城市“集中供热”和“热电联产”,随着大容量供热式汽轮机组的不断投运,供热式汽轮机组在电网中所占的比重越来越大。由于供热式汽轮机组对外热负荷对电网的影响和限制,整个电网的调峰能力将受到越来越大的制约。
在电网仍然缺乏调峰能力以及存在电力缺口的情况下,为了保证电力平衡,使供热式汽轮机组更加深入地参与电网调峰,以下研究在满足外界热负荷的前提下,供热式汽轮机组的电负荷特性 。
【1】背压式汽轮机没有凝汽设备,开车时不用抽真空,且暖管暖机的时间较短,抽汽设备又分为射流式和容积式,射流式又分为射水和射汽,容积式又分为液环式和离心式,抽气式汽轮机开车要比背压式繁琐的多,首先它需要...
你这回答的是人家要问的问题么?人家问的是中间抽汽-凝汽式汽轮机的工作原理。我也不知道楼主的知识水平怎么样的,我就当你知道什么是凝汽式的汽轮机吧。其实中间抽汽式的汽轮机和凝汽式的没多大的区别,就是在汽机...
进入汽轮机做功的蒸汽,除少量漏汽外,全部或大部排入凝汽器凝结成水,这种汽轮机称为凝汽式汽轮机。背压式汽轮机是指不设凝汽器的机组,进入汽轮机的蒸汽做功后以高于大气压力的压力排出,供工业或采暖使用。
1.研究方法
研究方法有2种:供热式汽轮机热力性能试验方法和利用汽轮机制造厂提供的工况图进行分析的方法。
热力性能试验方法是运用供热式汽轮机组的热力性能试验,针对特定的供热机组,通过调整机组的热、电负荷,从而得出机组在各种外界热负荷下所能承担的最大、最小电负荷。该方法真实可靠,适用于没有工况图的供热式汽轮机。
在有制造厂提供的工况图的情况下,可以利用供热式汽轮机的工况图进行分析,依据工况图上提供的热、电负荷关系曲线,确定各种热负荷下电负荷的可调范围,该方法需要的试验工作量较小,现场使用起来方便快捷。
2.存在的问题
热力性能试验虽可得到准确可靠的热、电负荷关系,但是需要的工作量较大,耗费的时间较长。同时由于试验期间需要不断调整热、电负荷,将对外界的热用户和电网调度产生一定的影响。
由于工况图的热、电负荷关系是在设计工况下得出的,如果考虑到汽轮机及其热力系统的实际运行状态,如汽轮机的实际效率与设计值有偏差,低于设计值会造成汽轮机的进汽流量增大。同时热力系统的运行状态如加热器的焓升、端差偏离设计值,会造成非调整抽汽流量与设计流量的偏差。以上这些因素的存在会造成通过工况图得出的结论与供热汽轮机的实际调峰特性产生一定的偏差。
3.可行性方法
在对2种方法分析研究的基础上,可以利用工况图对供热汽轮机的热电负荷特性进行初步分析后,再利用热力试验根据供热汽轮机的实际运行状态,对通过工况图得出的结论进行适当的偏差修正,这种偏差修正在实际应用时可以通过少量的现场热力试验得到,以下将利用这种方法,以一次调节抽汽式汽轮机为例,对供热汽轮机组的热、电负荷特性进行分析,以使供热汽轮机在保证热负荷稳定的前提下,安全灵活的上、下调整其输出功率。
通过的理论分析,可以利用工况图得出一次调节抽汽式汽轮机的调峰特性, 以某热电厂C300/220216.67/537/537型一次调节抽汽式汽轮机为例进行分析,得出了该汽轮机在采暖抽汽量De分别为100t/h和500t/h时,汽轮机输出功率的可调范围。
根据机组实际运行情况,取锅炉最低稳燃负荷流量(即汽轮机的最小进汽流量)为500t/h。当De为100t/h时,根据该抽汽流量线与汽轮机最大进汽量线的交点可以得出汽轮机最大输出功率为317.3MW,根据该抽汽流量线与汽轮机最小进汽量线的交点可以得出汽轮机最小输出功率为136.8MW;当De为500t/h时,根据该抽汽流量线与汽轮机最大进汽量线的交点可以得出汽轮机最大输出功率为246.9MW ,根据该抽汽流量线与汽轮机最小凝汽量(DⅡmin=90t/h) 线的交点可以得出汽轮机最小输出功率为159.8MW。
通过现场热力试验进行修正,其结果为:当De为100t/h 时,发电机功率可在141.2~316.8MW之间调整;当De为500t/h时,发电机功率可在162.3~246.1MW之间调整 。
综上所述,提出的方法能够根据工况图从理论上确定一次调节抽汽式供热汽轮机的调峰特性,同时结合供热式汽轮机的实际运行状况,经过修正最终得出合理的、可行的一次调节抽汽式供热汽轮机的调峰运行方式。为电网中供热式汽轮机在不影响热用户的前提下参与电网调峰打下了基础。特别是随着大容量供热式汽轮机组在电网中所占比重的日益增大、电网仍然缺乏调峰能力以及存在电力缺口的情况下,该方法具有较高的工程应用价值。
C25-8.83/0.981-2 型 25MW抽汽式汽轮机 调节系统说明书 南京汽轮电机 (集团 )有限责任公司 南京汽轮电机 (集团 )有限责任公司 代号 代替 C25-8.83/0.981-2 25MW 抽汽式汽轮机调节系统说明书 共 27 页 第 1 页 编 制 校 对 审 核 会 签 标准审查 审 定 批 准 标记 数量 页次 文件代号 简要说明 签名 磁盘(代号) 底图号 旧底图号 归档 Z585.08/01版本A 2 目 次 1 引言 ................................................................... 4 2 调节保安系统的主要技术规范 ............................................. 4 3 调节系统的工作原理和系统介绍 ..............
根据某电厂1、2号汽轮机工业抽汽油动机在运行过程中,多次发生油动机高温、漏油,提出了对油动机与缸体及调门油动机与门体连接处进行冷却改造。
又称单抽汽式汽轮机。由高压部分和低压部分组成,相当于一台背压式汽轮机与一台凝汽式汽轮机的组合。新汽进入高压部分作功,膨胀至一定压力后分为二股,一股抽出供给热用户,一股进入低压部分继续膨胀作功,最后排入凝汽器。抽汽压力设计值根据热用户需要确定,并由调压器控制,以维持抽汽压力稳定。单抽汽式汽轮机的功率为高、低压部分所生产功率之和,由进汽量和流经低压部分蒸汽量所决定。调节进汽量可以得到不同的功率。因此,在一定范围内,可同时满足热、电负荷需要。单抽式汽轮机在供热抽汽量为零时,相当于一台凝汽式汽轮机;若将进入高压缸的蒸汽全部抽出供给热用户,则相当于一台背压式汽轮机。但实际运行中,为了冷却低压缸,带走由于鼓风摩擦损失所产生的热量,必须有一定量的蒸汽流过低压部分进入凝汽器,所需最小流量约为低压缸设计流量的10%。单抽汽式汽轮机的工况如图所示,它表示出新汽量(Do)、抽汽量(Ce)、电功率(Ni)三者之间的关系;图中Do表示凝汽量,ohh线为抽汽量为零时的凝汽工况线,cdd 线为抽汽量等于新汽量时的背压工况线,在以上两线之间为等抽汽量与等凝汽量工况线,它表示在不同抽汽量下与不同凝汽量下全机电功率与蒸汽流量的关系。在最大抽汽量下汽轮发电机组的最大电功率如图中e点所示;图中如已知Do、De、Do和Ni4个量中的任何两个量,可求得另外两个量。
又称双抽汽式汽轮机。可以同时满足不同参数的热负荷。整个汽轮机分为高、中、低压 3部分。新汽进入高压部分作功,膨胀到一定压力,抽出一部分蒸汽供给热用户;另一部分进入中压部分继续膨胀作功后,再抽出一部分供暖,其余蒸汽经过低压部分排入凝汽器。 双抽汽式汽轮机的工况图是按照一定的典型系统和额定参数绘制的。若汽轮机运行条件不同于绘制工况时,应进行适当修正。调节抽汽式汽轮机各缸均单独设置配汽机构,分别控制各缸进汽量。中、低压缸配汽结构有调节阀和旋转隔板两种形式。功率较小的抽汽机组采用旋转隔板形式有利于设计成单缸结构;高压缸则普遍采用喷嘴调节方式,调节级多数为双列级,以保证有足够大的通流能力。 双抽汽式汽轮机在高、低压缸流量均接近设计值时具有较高的发电经济性。由于热负荷的变化,有时流经各缸的流量差别很大,在某些工况下发电经济性较低。因此,调节抽汽式汽轮机应根据主要热负荷情况进行设计,合理分配各缸流量,以保证长期运行中有较高经济性。合理选定抽汽压力对机组经济性有明显影响,在满足热用户前提下,应尽量降低抽汽压力。早期生产的供暖抽汽机组,抽汽压力为0.12~0.25兆帕,近年已将下限降为0.07兆帕。
一次调节抽汽式汽轮机
又称单抽汽式汽轮机。由高压部分和低压部分组成,相当于一台背压式汽轮机与一台凝汽式汽轮机的组合。新汽进入高压部分作功,膨胀至一定压力后分为二股,一股抽出供给热用户,一股进入低压部分继续膨胀作功,最后排入凝汽器。抽汽压力设计值根据热用户需要确定,并由调压器控制,以维持抽汽压力稳定。单抽汽式汽轮机的功率为高、低压部分所生产功率之和,由进汽量和流经低压部分蒸汽量所决定。调节进汽量可以得到不同的功率。因此,在一定范围内,可同时满足热、电负荷需要。单抽式汽轮机在供热抽汽量为零时,相当于一台凝汽式汽轮机;若将进入高压缸的蒸汽全部抽出供给热用户,则相当于一台背压式汽轮机。但实际运行中,为了冷却低压缸,带走由于鼓风摩擦损失所产生的热量,必须有一定量的蒸汽流过低压部分进入凝汽器,所需最小流量约为低压缸设计流量的10%。单抽汽式汽轮机的工况如概述图所示,它表示出新汽量(Do)、抽汽量(Ce)、电功率(Ni)三者之间的关系;概述图中Do表示凝汽量,ohh线为抽汽量为零时的凝汽工况线,cdd 线为抽汽量等于新汽量时的背压工况线,在以上两线之间为等抽汽量与等凝汽量工况线,它表示在不同抽汽量下与不同凝汽量下全机电功率与蒸汽流量的关系。在最大抽汽量下汽轮发电机组的最大电功率如概述图中e点所示;概述图中如已知Do、De、Do和Ni4个量中的任何两个量,可求得另外两个量。
二次调节抽汽式汽轮机
又称双抽汽式汽轮机。可以同时满足不同参数的热负荷。整个汽轮机分为高、中、低压 3部分。新汽进入高压部分作功,膨胀到一定压力,抽出一部分蒸汽供给热用户;另一部分进入中压部分继续膨胀作功后,再抽出一部分供暖,其余蒸汽经过低压部分排入凝汽器。 双抽汽式汽轮机的工况图是按照一定的典型系统和额定参数绘制的。若汽轮机运行条件不同于绘制工况时,应进行适当修正。调节抽汽式汽轮机各缸均单独设置配汽机构,分别控制各缸进汽量。中、低压缸配汽结构有调节阀和旋转隔板两种形式。功率较小的抽汽机组采用旋转隔板形式有利于设计成单缸结构;高压缸则普遍采用喷嘴调节方式,调节级多数为双列级,以保证有足够大的通流能力。 双抽汽式汽轮机在高、低压缸流量均接近设计值时具有较高的发电经济性。由于热负荷的变化,有时流经各缸的流量差别很大,在某些工况下发电经济性较低。因此,调节抽汽式汽轮机应根据主要热负荷情况进行设计,合理分配各缸流量,以保证长期运行中有较高经济性。合理选定抽汽压力对机组经济性有明显影响,在满足热用户前提下,应尽量降低抽汽压力。早期生产的供暖抽汽机组,抽汽压力为0.12~0.25兆帕,近年已将下限降为0.07兆帕。
从中间级抽出蒸汽供给热用户的汽轮机。抽汽压力根据用户的需要和产品系列化的要求而确定,能在一定范围内调整.
按抽汽数目的不同,抽汽式汽轮机分为单抽汽和双抽汽两种。单抽汽的通流部分可分为高压和低压两段。双抽汽的通流部分分成高压、中压和低压三段。每段设有单独的汽缸,构成分缸布置,或几段合在一个汽缸内,构成单缸布置。段间有抽汽口,部分蒸汽经由此口抽出,其余则经一可调节流量的机构进入下一段。常用的流量调节机构有调节阀和可以改变环形通流面积的旋转隔板两种。抽汽式汽轮机的调节控制系统除装有调速器之外还有调整抽汽压力的调压器.
抽汽式汽轮机运行时既要供电(或动力),又要供热。当抽汽量为零时便与凝汽式汽轮机相同,进入汽轮机的蒸汽除一部分流入给水加热器加热锅炉给水外,其余蒸汽都流经各级后进入凝汽器。当抽汽量不为零时,进入汽轮机的蒸汽先流过高压段各级作功,然后一部分蒸汽经由抽汽口抽出供热;另一部分蒸汽通过调节阀或旋转隔板流经其余各级,继续作功,最后进入凝汽器。这时如电负荷下降,则汽轮机的转速上升,调速器动作,高压调节阀关小,抽汽调节阀(或旋转隔板)开大,使功率下降,保持抽汽量不变。当热负荷增大时,抽汽压力降低,调压器动作,高压调节阀开大,抽汽调节阀(或旋转隔板)关小。这样,高压段的功率增大,低压段的功率减小,两者相抵,使汽轮机的功率保持不变,而供热的抽汽量增加。调速器和调压器能共同控制高压段和低压段的调节阀或旋转隔板,以同时满足用户对热负荷和电负荷的需求。
排汽压力小于大气压力的抽汽式汽轮机称为抽汽凝汽式汽轮机;排气压力大于大气压力的抽汽式汽轮机称为抽汽背压式汽轮机。抽汽背压式汽轮机的输出功率取决于供热的蒸汽量大小,而不能任意改变。因此它必须与其他汽轮机并列运行或并入电网,以保证供电要求。