中文名 | 铁磁谐振 | 外文名 | Ferromagnetic resonance |
---|---|---|---|
学 科 | 电力工程 | 领 域 | 能源 |
范 围 | 电力系统 | 释 义 | 电力系统自激振荡的一种形式 |
相似特征
铁磁谐振和单相接地、断线故障都会使经消弧线圈接地的主变压器中性点电压发生严重偏移;在调度端都会出现中性点零序电压越限报警信号,如66kVⅡ段母线接地或谐振、66kVⅡ段母线越限等;故障母线三相电压出现明显不平衡,如其中有两相电压升高、一相电压降低;多间隔的保护装置发出告警信号,如7831RCS9612A 装置报警、保护屏CSC-166装置告警等;消弧线圈出现频繁动作信号,如主变压器风冷消弧线圈直流短接、交流短接、1号66kV 消弧线圈控制器外部故障等。如果不注意区别故障母线和相邻母线的三相电压和零序电压的大小和上述告警信号出现的规律,这些现象容易导致调控员将谐振误判为接地或者断线。
告警信号出现的不同规律
在中性点经消弧线圈接地系统中,单相接地不会导致保护出口跳闸来切除故障,因此也不会出现重合闸动作信号,并且由于消弧线圈的补偿作用,较小的短路电流不至于烧损导线或电缆而发展为断线故障。按照调度规程的要求,单相接地故障可有2h的处理时间。虽然弧光接地所引起的过电压可能导致消弧线圈与接地点电容形成串联谐振 。
调控员平时应关注重合成功后故障线路三相不平衡情况和小电流接地系统中各条母线,及时消除断线故障和调整严重三相不均衡的线路。当越限报警信号发生时,调控员应该进行如下操作。
1)观察相应主变中性点上的消弧线圈动作信息和该母线上所有间隔保护装置的异常报警信号,用1s时间来辨别事故的真伪,若发生单相接地、断线、谐振事故,这些告警信号应伴随出现。
2)用5s时间观察故障母线的三相电压并判断该母线上若干线路的有功值相对于其电流值是否正常,以排除电压互感器故障的可能性。
3)用10s时间根据故障母线三相电压的实时显示值判断是否为谐振事故,依据为其中一相电压略升高或降低,另两相降低为0或升高至1.2倍线电压,且恒定无波动;或经主变压器高压侧相连分列运行的低压相邻母线的三相电压出现明显三相不平衡。出现以上2种特征中的任意1种即为谐振事故。如果由于遥测数据缺失等原因导致无法观察到上述特征,调控员可继续用5~10min时间进行单相接地、断线等故障的判断和排查,同时观察越限报警和大量保护装置的异常报警“动作/复归”信号是否多次成对出现,出现2次及以上即可判定为谐振事故。
虽然铁磁谐振在国内外已有很多研究成果,在电网运行中也采取了许多消谐措施,但小电流接地系统的铁磁谐振事故却依然频繁发生。当调控员误将铁磁谐振当成接地或断线故障进行排查而延迟事故处理时,一次设备往往会发生严重损坏 。
导磁与否是区别铁磁材料与非铁磁材料的区别,也就是看该材料能否被吸铁石吸附。铁、钢、镍、钴等铁磁材料,没有受外磁场的作用时,其分子电流所产生的合成磁矩在宏观上等于零,因而不呈现磁性。当铁磁材料被引入外磁...
在母线上装设中性点接地的三相星形电容器组 电流互感器高压侧中性点经电阻接地 电压互感器一次侧中性点经零序电压互感器接地 电压互感器二次侧开三角绕组接阻尼电阻 中性点经消弧线圈接地。 互感器:...
系统间歇性单相弧光接地会引起铁磁谐振过电压,此时,应将微机消谐器并联在开口三角处,通过微机消谐装置投入电阻消除谐振。
1、谐振回路中铁心电感为非线性的,电感量随电流增大、铁心饱和而趋于平稳;
2、铁磁谐振需要一定的激发条件,使电压、电流幅值从正常工作状态转移到谐振状态。如电源电压暂时升高、系统受到较强烈的电流冲击等;
3、铁磁谐振存在自保持现象。激发因素消失后,铁磁谐振过电压仍然可以继续长期存在;
4、铁磁谐振过电压一般不会非常高,过电压幅值主要取决于铁心电感的饱和程度。
随着国家电网公司对调度自动化基础数据综合整治工作的深入进行,调控中心所汇集的电网运行监控信息的准确性、可靠性、实时性、全面性得到大幅提高,这为调控员快速识别、分析、处理各类电网异常、故障、事故提供了更广的视角。通过实践证明:利用越限报警、保护装置告警、消弧线圈动作信息、故障母线及其相邻母线的三相电压和电压幅值的综合判据能够快速地辨识出铁磁谐振,为调控员及时正确处理谐振事故,防止损失扩大赢得了宝贵的时间 。2100433B
1消除铁磁谐振的防范措施在实际应用中,通常采用改变电感、电容参数,使其不具备谐振条件来消除铁磁谐振或提高设备的过电压能力。室外采用电容式电压互感器。通过改变电容参数消除零序谐振回路为原理,从根本上消除谐振。提升电压互感器的过电压能力和绝缘水平。室内35 kV开关柜内电压互感器因受开关柜内的大小、尺寸限制,采用特殊的电容型的电磁式电压互感器。因其制造工艺采用低磁密设计及安装电容屏装置,在系统运行下呈现电容状态具有
GIS气体绝缘金属封闭开关设备在异常或倒闸操作改变运行方式的情况下,特别是在对只带电压互感器的空母线充电的操作中,若没有选择合理的运行方式和操作方式,很容易发生铁磁谐振过电压事故。结合一起因冰雪雨冻灾害引发铁磁谐振造成电磁式电压互感器过流而绝缘击穿接地的案例,叙述了故障处理过程,浅析了铁磁谐振发生的原因,提出了防范对策及应对措施。
(1)基波谐振: 一相对地电压降低,另两相对地电压升高超过线电压;或两相电压降低、一相电压升高超过线电压、有接地信号发出 ;
(2)分次谐波: 三相对地电压同时升高、低频变动;
(3)高次谐波: 三相对地电压同时升高超过线电压。
线电压升高、表计摆动,电压互感器开口三角形电压超过100V。
铁磁谐振是电力系统自激振荡的一种形式,是由于变压器、电压互感器等铁磁电感的饱和作用连续性、高幅值谐振过电压现象。其主要特点为:
(1)谐振回路中铁心电感为非线性的,电感量随电流增大、铁心饱和而下降;
(2)铁磁谐振需要一定的激发条件,使电压、电流幅值从正常工作状态转移到谐振状态。如电源电压暂时升高、系统受到较强烈的电流冲击等;
(3)铁磁谐振存在自保持现象。激发因素消失后,铁磁谐振过电压仍然可以继续长期存在;
(4)铁磁谐振过电压一般不会非常高,过电压幅值主要取决于铁心电感的饱和程度。
电力系统中存在着许多储能元件,当系统进行操作或发生故障时,变压器、互感器等含铁芯元件的非线性电感元件与系统中电容串联可能引起铁磁谐振,对电力系统安全运行构成危害。在中性点不接地的非直接接地系统中,铁磁式电压互感器引起的铁磁谐振过电压是常见的,是造成事故较多的一种内部过电压。这种过电压轻则使电压互感器一次熔丝熔断,重则烧毁电压互感器,甚至炸毁瓷绝缘子及避雷器造成系统停运。在一定的电源作用下会产生串联谐振现象,导致系统中出现严重的谐振过电压。
铁磁谐振电路是由铁心电感元件组成,如发电机、变压器、电压互感器、电抗器、消弧线圈等和和系统的电容元件,如输电线路、电容补偿器等形成共谐条件,激发持续的铁磁谐振,使系统产生谐振过电压。
电力系统的铁磁谐振可分二大类:一类是在66kV及以下中性点绝缘的电网中,由于对地容抗与电磁式电压互感器励磁感抗的不利组合,在系统电压大扰动(如遭雷击、单相接地故障消失过程以及开关操作等)作用下而激发产生的铁磁谐振现象;另一类是发生在220kV(或110kV)变电站空载母线上,当用220kV、110kV带断口均压电容的主开关或母联开关对带电磁式电压互感器的空母线充电过程中,或切除(含保护整组传动联跳)带有电磁式电压互感器的空母线时,操作暂态过程使连接在空母线上的电磁式电压互感器组中的一相、两相或三相激发产生的铁磁谐振现象,即串联谐振,简单地讲就是由高压断路器电容与母线电压互感器的电感耦合产生谐振由于谐振波仅局限于变电站空载母线范围内,也称其为变电站空母线谐振。