"天线阵"是天文学专有名词。来自中国天文学名词审定委员会审定发布的天文学专有名词中文译名,词条译名和中英文解释数据版权由天文学名词委所有。
移动通信常用的天线、直放站天线与室内天线。 无论是GSM 还是CDMA, 板状天线是用得最为普遍的一类极为重要的天线。这种天线的优点是:增益高、扇形区方向图好、后瓣小、垂直面方向图俯角控制方便、密封性...
天线都有增益,有正有负,是与元天线作比较后计算出的结果。所谓元天线就是把天线理想化为一个没有长度没有宽度的点。2db的天线在2.4G和1.2G的频率上来说是很小的。一般共线天线(通常所说的棒子天线或者...
套安装定额建筑智能化系统里相应子目,找不到可以查询一下。
结合用探地雷达的天线阵技术探测地下PVC管的成功实例,介绍了天线阵技术的原理、方法以及效果。天线阵技术沿测线一次扫描就能得到4张不同深度的雷达图像,并实现了对同一深度目标体不同频率、不同角度的探测,大大提高了探测的精度和效率。
针对用于机载脉冲多普勒火控雷达上的平板裂缝天线——大口径、多层、薄壁、形状复杂,焊接、热处理强化后变形大等特征,在目前几种测量方法中,通过可行性分析,结合单位实际情况,最终确定采用三坐标测量。文中还着重讨论了天线阵面上千个缝槽三坐标增量测量法,并提出了后续数据处理方法。
对于TD-LTE网络,在8通道天线的设计中,首先需要考虑FAD频段的超宽带应用需求,实现天线的宽频化。智能天线最初应用于TD-SCDMA网络,其工作频段为F频段(1880~1920MHz)和A频段(2010~2025MHz)。在这两个频段,天线采用了0.5波长设计,水平面半功率波束宽度为90°,通过广播赋形权值合成65°广播波束。在TD-LTE阶段,智能天线若要兼容TD-SCDMA,可在F频段和A频段沿用0.5波长设计,保持和TD-SCDMA窄带天线的同等性能。同时,TD-LTE智能天线还需要支持D频段(2575~2635MHz),为了在此频段获得良好的波束特性,提高辐射效率,可采用兼容的0.7波长设计,将水平面半功率波束宽度变为65°,实现单元阵列直接用于广播信道。这样,通过F、A频段0.5波长和D频段0.7波长设计技术的融合,兼顾了TD-SCDMA和TD-LTE的要求,实现了对F、A、D多频段的支持。
早期的单极化智能天线面积较大(结构尺寸达1300mm×660mm×110mm),尤其是宽度巨大,给站址选取和工程安装造成很大难度。为了减小智能天线的结构尺寸,业界先后提出过6列单极化智能天线、紧缩型智能天线和镂空型智能天线等方案,后来又引入了4列双极化智能天线方案。4列双极化智能天线将±45极化的两列通道以“×”型组合,大大降低了智能天线的整体宽度,很大程度上解决了工程安装的难题,而性能上接近于单极化天线。目前智能天线基本上都采用双极化方式,如图1所示。
智能天线双极化之后,天线尺寸有了很大改观,但在密集城区的某些区域,天面资源非常有限,普通双极化天线仍然难以架设;另一方面,对于密集城区,站点间距小,对天线的增益要求不高,但对其覆盖的均匀性要求较高。在损失部分增益但保证天线基本性能的前提下,可以通过改进设计进一步降低天线尺寸,使其更易于在空间资源匮乏的站点安装。发展小型化天线(如图2所示)正是基于上述考虑。通过优化馈电网络等设计,小型化天线在尺寸减少一半的同时,增益仅降低约1.5dB。
从外场初步测试的情况来看,小型化天线的拉远距离与普通天线差距不大。按照站间距500m以内的密集城区来评估,小型化天线在覆盖能力和吞吐量方面与普通天线基本相当,其测试结果如图3和图4所示。
小型化天线在面积上仅有垂直极化8天线的24%,重量减轻了70%。由于外形轻巧,工程安装的难度大大降低,单人即可完成上站安装的全部过程,体现出极大的工程优势。
由于密集城区是LTE部署的重点区域,灵活的天线部署方案将成为未来天馈建设的重要需求,同时也是难点所在。结合LTE技术发展的趋势及运营需要,未来天馈的设计将着重考虑以下“四化”目标:
宽带化:支持超宽带多天线技术和双极化8通道设计方案;
多模化:支持BF/MIMO,覆盖3G/4G需求;支持未来MU-MIMO技术;
简易化:与电调、远端控制等技术相结合;支持集束接口,减少接头数量;
小型化:发挥城区及密集城区应用设计特色,减小天线尺寸以获得安装空间。