受激散射偏振光放大器(LASSP)由美国研制成功,LASSP利用极化效应产生连续光束,可作为激光器的替代应用于光通信和激光手术等领域,能耗较现有激光器减少1000倍。
利用极化效应,部分光子和工作物质相互作用可产生连续光束,首先,研究人员加强了电子偏振散射以增强弛豫极化,从而确保基态的连续性。其次,利用磁场使偏置电流注入更多载流子,以满足偏振激光发射条件。
研究人员通过电激励微腔中砷化镓半导体样本获得极化,极化能量被快速传递给光子而使其迅速衰减,并基于其初始极化性能,作为单色光束从微腔中逸出。
第一个电激励偏振激光器自1996年该器件被提出以来,世界各国的研究人员始终致力于该项研究。目前该项研究已不再是科学界的奇迹,而发展成为一个真正的器件。LASSP可作为微芯片用于计算机,实现片上和片间光通信。
LASSP也可用于当今激光器应用的任何领域,如光通信和激光手术。目前LASSP只能在低温环境下工作,但开发者期望研制出可在室温环境下工作的LASSP。
美国密歇根大学研制出了受激散射偏振光放大器(LASSP),可作为现有激光器的一种替代方案,能耗可减少1000倍。
光放大器按照原理可以分为:掺杂光纤放大器、传输光纤放大器和半导体激光放大器三种类型。
原理:高频功率放大器用于发射机的末级,作用是将高频已调波信号进行功率放大,以满足发送功率的要求,然后经过天线将其辐射到空间,保证在一定区域内的接收机可以接收到满意的信号电平,并且不干扰相邻信道的通信。...
您错误的理解信号放大器了第一,信号在电线中进行传输的时候会有衰减的,所以使用信号放大器只是为了恢复原始信号第二,现在很多家的电视比较多,一条线走也容易出现信号衰减,所以使用分配信号放大器所以只要使用一...
针对多芯光纤完善了描述抽运光、信号光和Stokes信号的速率方程组.考虑了温差对受激布里渊散射的影响,利用有限元法求解温度分布方程组,分析了前向和后向抽运方式、对流系数、Stokes初始功率、光纤掺杂粒子密度和光纤长度对受激布里渊散射增益的影响.研究表明:后向抽运方式在抑制受激布里渊散射方面具有明显优势;减小对流系数有助于抑制受激布里渊散射;提高光纤掺杂密度能够加强抑制受激布里渊散射,同时也有助于提高光纤放大器的斜率效率.比较了在相同最佳光纤长度条件下,单芯和19芯光纤放大器的最高工作温度和受激布里渊散射增益.在受激布里渊散射增益小于阈值的前提下,19芯光纤放大器比单芯光纤放大器具有较低的最高工作温度,为进一步提升输出功率提供了更大空间.
光纤通信中的光放大器
检查放大器是否出现自激振荡,可以把放大器输入端对地短路,用示波器(或交流毫伏表)接在放大器输出端进行观察,自激振荡的频率一般比较高或极低,而且频率随着放大器电路参数的不同而变化(甚至拨动一下放大器内部导线的位置,频率也会改变)。振荡波形一般是比较规则的,而且幅度也较大,往往会使三极管处于饱和或截止状态。
高频自激振荡主要是由于安装、布线不合理引起的。例如输入线和输出线靠得太近,产生正反馈作用。因此,安装时,元器件布置要紧凑、缩短连线的长度,或进行高频滤波或加入负反馈,以压低放大器对高频信号的放大倍数或移动高频信号的相位,从而抑制自激振荡。
低频自激振荡是由于放大器各级电路共用一个直流电源引起的。因为电源总有一定的内阻,特别是电池用得时间太长或稳压电源质量不高,使得电源内阻比较大时,则会引起输出级接电源处的电压波动,此电压波动通过电源供电回路作用到输入级接电源处,使得输入级输出电压相应变化,经数级放大后,波形更厉害,如此循环,就会造成振荡。最常用的消除方法是在放大器各级电路之间加入"电源去耦电路",以消除级间电源波动的互相影响。
散射光的波长与入射光相同,而其强度与波长λ成反比的散射,称瑞利散射定律,由瑞利于1871年提出。此定律成立的条件是散射微粒的线度小于波长。若入射光为自然光,不同方向散射光的强度正比于1+cosθ,θ为散射光与入射光间的夹角,称散射角。θ=0或π时散射光仍为自然光;θ=π/2时散射光为线偏振光;在其他方向上则为部分偏振光。根据瑞利散射定律可解释天空的蔚蓝色和夕阳的橙红色。
当散射微粒的线度大于波长时,瑞利散射定律不再成立,散射光强度与微粒的大小和形状有复杂的关系。G.米和P.德拜分别于1908年和1909年以球形粒子为模型详细计算3对电磁波的散射。米氏散射理论表明,当球形粒子的半径a<0.3λ/-2π时散射光强遵守瑞利定律,a较大时散射光强与波长的关系不再明显。用白光照射由大颗粒组成的物质时(如天空的云层等),散射光仍为白色。气体液化时,在临界状态附近由密度涨落引起的不均匀区域的线度比波长要大,所产生的强烈散射使原来透明的物质变混浊,称为临界乳光。
偏振光是指光矢量的振动方向不变,或具有某种规则地变化的光波。按照其性质,偏振光又可分为平面偏振光(线偏振光)、圆偏振光和椭圆偏振光、部分偏振光几种。如果光波电矢量的振动方向只局限在一确定的平面内,则这种偏振光称为平面偏振光,因为振动的方向在传播过程中为一直线,故又称线偏振光。如果光波电矢量随时间作有规则地改变,即电矢量末端轨迹在垂直于传播方向的平面上呈圆形或椭圆形,则称为圆偏振光或椭圆偏振光。如果光波电矢量的振动在传播过程中只是在某一确定的方向上占有相对优势,这种偏振光就称为部分偏振光。
自然光
光波是横波,即光波矢量的振动方向垂直于光的传播方向。通常,光源发出的光波,其光波矢量的振动在垂直于光的传播方向上作无规则取向,但统计平均来说,在空间所有可能的方向上,光波矢量的分布可看作是机会均等的,它们的总和与光的传播方向是对称的,即光矢量具有轴对称性、均匀分布、各方向振动的振幅相同,这种光就称为自然光。
完全偏振光
(a)线偏振光
光矢量端点的轨迹为直线,即光矢量只沿着一个确定的方向振动,其大小随相位变化、方向不变,称为线偏振光。
(b)椭圆偏振光
光矢量端点的轨迹为一椭圆,即光矢量不断旋转,其大小、方向随时间有规律的变化。
(c)圆偏振光
光矢量端点的轨迹为一圆,即光矢量不断旋转,其大小不变,但方向随时间有规律地变化。
部分偏振光
在垂直于光传播方向的平面上,含有各种振动方向的光矢量,但光振动在某一方向更显著,不难看出,部分偏振光是自然光和完全偏振光的叠加。