石墨稀简介
不存在石墨稀的概念,只有石墨烯,本词条为无意义的错误词条 例证是国家建设的CNKI中国知网上搜索"石墨稀"全部结果重新指向"石墨烯"。
石墨烯是由碳原子构成的蜂巢形结构,是一个世纪以来研发的最重要的新材料。石墨 烯由石墨制成,后者是一种灰色矿物,储量极高,主要产自智利、印度和加拿大等国。
石墨烯的命名来自英文的graphite(石墨) + -ene(烯类结尾),也可称为"单层石墨"。石墨烯被认为是平面多环芳香烃原子晶体。其碳原子排列与石墨的单原子层雷同,是碳原子以sp2混成轨域呈蜂巢晶格(honeycomb crystal lattice)排列构成的单层二维晶体。石墨烯可想像为由碳原子和其共价键所形成的原子尺寸网。
石墨烯卷成圆桶形可以用为碳纳米管;另外石墨烯还被做成弹道晶体管(ballistic transistor)并且吸引了大批科学家的兴趣 。在2006年3月,佐治亚理工学院研究员宣布, 他们成功地制造了石墨烯平面场效应晶体管,并观测到了量子干涉效应,并基于此结果,研究出以石墨烯为基材的电路。
石墨烯的问世引起了全世界的研究热潮。它是已知材料中最薄的一种,质料非常牢固坚硬,在室温状况,传递电子的速度比已知导体都快。石墨烯的原子尺寸结构非常特殊,必须用量子场论才能描绘。
石墨稀结构
石墨烯是由碳六元环组成的两维(2D)周期蜂窝状点阵结构,它可以翘曲成零维(0D)的富勒烯(fullerene),卷成一维(1D)的碳纳米管(carbon nano-tube, CNT)或者堆垛成三维(3D)的石墨(graphite), 因此石墨烯是构成其他石墨材料的基本单元。石墨烯的基本结构单元为有机材料中最稳定的苯六元环, 是目前最理想的二维纳米材料.。理想的石墨烯结构是平面六边形点阵,可以看作是一层被剥离的石墨分子,每个碳原子均为sp2杂化,并贡献剩余一个p轨道上的电子形成大π键,π电子可以自由移动,赋予石墨烯良好的导电性。二维石墨烯结构可以看是形成所有sp2杂化碳质材料的基本组成单元。
石墨烯的结构非常稳定,碳碳键(carbon-carbon bond)仅为1.42Å。石墨烯内部的碳原子之间的连接很柔韧,当施加外力于石墨烯时,碳原子面会弯曲变形,使得碳原子不必重新排列来适应外力,从而保持结构稳定。这种稳定的晶格结构使石墨烯具有优秀的导热性。另外,石墨烯中的电子在轨道中移动时,不会因晶格缺陷或引入外来原子而发生散射。由于原子间作用力十分强,在常温下,即使周围碳原子发生挤撞,石墨烯内部电子受到的干扰也非常小。
石墨烯是构成下列碳同素异形体的基本单元:石墨,木炭,碳纳米管和富勒烯。完美的石墨烯是二维的,它只包括六边形(等角六边形); 如果有五边形和七边形存在,则会构成石墨烯的缺陷。12个五角形石墨烯会共同形成富勒烯。
石墨烯的合成方法主要有两种:机械方法和化学方法。机械方法包括微机械分离法、取向附生法和加热SiC的方法 ; 化学方法是化学还原法与化学解理法。
微机械分离法
最普通的是微机械分离法,直接将石墨烯薄片从较大的晶体上剪裁下来。2004年Novoselovt等用这种方法制备出了单层石墨烯,并可以在外界环境下稳定存在。典型制备方法是用另外一种材料膨化或者引入缺陷的热解石墨进行摩擦,体相石墨的表面会产生絮片状的晶体,在这些絮片状的晶体中含有单层的石墨烯。 但缺点是此法是利用摩擦石墨表面获得的薄片来筛选出单层的石墨烯薄片,其尺寸不易控制,无法可靠地制造长度足供应用的石墨薄片样本。
取向附生法-晶膜生长
取向附生法是利用生长基质原子结构"种"出石墨烯,首先让碳原子在 1 1 5 0 ℃下渗入钌,然后冷却,冷却到850℃后,之前吸收的大量碳原子就会浮到钌表面,镜片形状的单层的碳原子" 孤岛" 布满了整个基质表面,最终它们可长成完整的一层石墨烯。第一层覆盖 8 0 %后,第二层开始生长。底层的石墨烯会与钌产生强烈的交互作用,而第二层后就几乎与钌完全分离,只剩下弱电耦合,得到的单层石墨烯薄片表现令人满意。但采用这种方法生产的石墨烯薄片往往厚度不均匀,且石墨烯和基质之间的黏合会影 响碳层的特性。另外Peter W.Sutter 等使用的基质是稀有金属钌。
加热 SiC法
该法是通过加热单晶6H-SiC脱除Si,在单晶(0001) 面上分解出石墨烯片层。具体过程是:将经氧气或氢气刻蚀处理得到的样品在高真空下通过电子轰击加热,除去氧化物。用俄歇电子能谱确定表面的氧化物完全被移除后,将样品加热使之温度升高至1250~1450℃后恒温1min~20min,从而形成极薄的石墨层,经过几年的探索,Berger等人已经能可控地制备出单层或是多层石墨烯。其厚度由加热温度决定,制备大面积具有单一厚度的石墨烯比较困难。
包信和等开发了一条以商品化碳化硅颗粒为原料,通过高温裂解规模制备高品质无支持(Free standing)石墨烯材料的新途径。通过对原料碳化硅粒子、裂解温度、速率以及气氛的控制,可以实现对石墨烯结构和尺寸的调控。这是一种非常新颖、对实现石墨烯的实际应用非常重要的制备方法。
化学还原法
化学还原法是将氧化石墨与水以1 mg/mL的 比例混合, 用超声波振荡至溶液清晰无颗粒状物质,加入适量肼在1 0 0℃回流2 4 h ,产生黑色颗粒状沉淀,过滤、烘干即得石墨烯。Sasha Stankovich 等利用化学分散法制得厚度为1 nm左右的石墨烯。
化学解理法
化学解理法是将氧化石墨通过热还原的方法制备石墨烯的方法,氧化石墨层间的含氧官能团在一定温度下发生反应,迅速放出气体,使得氧化石墨层被还原的同时解理开,得到石墨烯。这是一种重要的制备石墨烯的方法,天津大学杨全红等用低温化学解理氧化石墨的方法制备了高质量的石墨烯
深圳大概率资管为您解答:石墨烯是一种由碳原子以sp2杂化方式形成的蜂窝状平面薄膜,是一种只有一个原子层厚度的准二维材料,所以又叫做单原子层石墨。由于其十分良好的强度、柔韧、导电、导热、光学特性,在物理...
1、作耐火材料:石墨及其制品具有耐高温、高强度的性质,在冶金工业中主要用来制造石墨坩埚,在炼钢中常用石墨作钢锭之保护剂,冶金炉的内衬。2.作导电材料:在电气工业上用作制造电极、电刷、碳棒、碳管、正流器...
国产石墨和进口石墨的区别主要在:颗粒度,像抗压、抗折强度,肖氏硬度,石墨内部结构等方面。
石墨烯出现在实验室中是在2004年,当时,英国曼彻斯特大学的两位科学家安德烈·杰姆和克斯特亚·诺沃消洛夫发现他们能用一种非常简单的方法得到越来越薄的石墨薄片。他们从石墨中剥离出石墨片,然后将薄片的两面粘在一种特殊的胶带上,撕开胶带,就能把石墨片一分为二。不断地这样操作,于是薄片越来越薄,最后,他们得到了仅由一层碳原子构成的薄片,这就是石墨烯。这以后,制备石墨烯的新方法层出不穷,经过5年的发展,人们发现,将石墨烯带入工业化生产的领域已为时不远了。 因此,两人在2010年获得诺贝尔物理学奖。 石墨烯的出现在科学界激起了巨大的波澜,人们发现,石墨烯具有非同寻常的导电性能、超出钢铁数十倍的强度和极好的透光性,它的出现有望在现代电子科技领域引发一轮革命。在石墨烯中,电子能够极为高效地迁移,而传统的半导体和导体,例如硅和铜远没有石墨烯表现得好。由于电子和原子的碰撞,传统的半导体和导体用热的形式释放了一些能量,目前一般的电脑芯片以这种方式浪费了70%-80%的电能,石墨烯则不同,它的电子能量不会被损耗,这使它具有了非同寻常的优良特性。
石墨稀应用前景
石墨烯是目前已知的力学强度最高的材料,并有可能作为添加剂广泛应用于新型高强度复合材料之中。用来开发制造出纸片般薄的超轻型飞机材料、超坚韧的防弹衣和"太空电梯"用的超韧缆线,研究表明石墨烯增强聚乙烯醇(PVA)复合材料,只需要添加0.7%(重量比)的石墨烯,就可以使复合材料的拉伸强度提高76 %,同时其杨氏模量增加62%;另外,在功能化石墨烯增强的聚氨酯复合材料中,石墨烯含量为1%时,其复合材料的强度提高75%,模量提高120 %。
在电子应用方面石墨烯的应用范围很广,从柔性电子产品到智能服装,从可折叠显示器到有机太阳能电池,甚至未来的全碳电路都是以石墨烯为原料。研究表明,石墨烯可以被刻成尺寸不到1个分子大小的单电子晶体管,石墨烯单电子晶体管可在室温下工作,而10纳米是硅材料技术无法再发挥作用的小型化极限,有研究者认为石墨烯可能最终会替代硅。石墨烯器件制成的计算机CPU的运行速度可达到太赫兹,即1千兆赫兹的1000倍。
石墨烯在高灵敏度传感器和高性能储能器件方面也已经展示出诱人的应用前景。
ž
2010年10月5日,英国曼彻斯特大学的两位科学家康斯坦丁·诺沃肖洛夫和安德烈·海姆因在石墨烯方面的研究荣获2010年诺贝尔物理学奖。
石墨烯及石墨烯光催化复合材料简介 1.1 前言 碳材料是地球上最普遍也是一类具有无限发展前景的材料, 从无定形的碳黑 到晶体结构的天然层状石墨; 从零维纳米结构的富勒烯到二维结构的石墨烯, 近 几十年来,碳纳米材料一直备受关注。 而三维网状结构的石墨烯自组装水凝胶的 发现 [1],不仅极大地充实了碳材料家族,为新材料和凝聚态领域提供了新的增长 点,而且由于其所具有的特殊纳米结构和性能, 使得石墨烯无论是在理论上还是 实验研究方面都已展现出了重大的科学意义和应用价值. 从而为碳基材料的研究 提供了新的目标和方向。 从石墨发现至今, 关于石墨烯的研究已经铺满各种期刊杂志, 此外,人们对 石墨烯衍生物也进行了深入研究,如氧化石墨烯、石墨烯纳米带、石墨烷、磁性 石墨烯衍生物等。 其中对氧化石墨烯和石墨烯纳米带的研究更为深入。 氧化石墨 烯是单一的碳原子层, 可以随时在横向尺寸上扩展到数十微米, 因
共晶石墨 (A、D、E、B 型及珊瑚状石墨 )的形成 在共晶结晶阶段生长的片状石墨依分布及形态特点可分成 A、D、E、B 型石墨, 它们分别在不同化学成分及过冷条件下形成。 A型石墨是生长于早期形成的共晶晶粒内的片状石墨。 在过冷度不大、 成核能力 较强的熔液中生成。由于分枝不很发达,故石墨分布较为均匀。 A 型片状石墨是 非正常共晶反应条件下形成的,石墨片超前生长几乎像初生相。 D 型石墨又称过冷石墨, 大的过冷造成强烈的石墨分枝是生成这种石墨的主要原 因。石墨分散度大,比 A 型石墨更细更短。尺寸在 20%26mu;ml 以下,大部分 在 2~%26mu;gm 范围内。在奥氏体枝晶问呈无方向性分布。石墨端部曲率半 径小,近似尖形。根据共晶系的分类, D 型过冷石墨是在石墨与奥氏体高度共生 的正常共晶条件下形成的。 石墨与奥氏体以相同的生长速度同时伸入液体, 从而 限制了它的长大。石墨呈