“配合比”相同,水灰比越小,混凝土的强度越高。混凝土的流动性越小,坍落度就越小,和易性也越差。“配合比”相同,水灰比越大,混凝土的强度越低。混凝土的流动性越大,坍落度就越大,和易性也越好。
水灰比太大,混凝土虽然流动性大,但是容易离析和泌水,和易性不好,严重影响混凝土强度,水灰比太小,混凝土流动性差,显得干涩影响泵送,对施工不利,但是对混凝土的强度有所提高。
对混凝土碳化的影响:
由于混凝土的碳化是CO2向混凝土内扩散的过程,混凝土的密实程度越高,扩散的阻力越大,混凝土的碳化深度就越小。混凝土碳化的深度还受单位体积的水泥用量或水泥石中的Ca(OH)2含量的影响。水灰比越大,单位水泥用量越小,混凝土单位体积内的Ca(OH)2含量也就越少,扩散的阻力就越小,CO2就越容易进入混凝土体内,碳化速度也就越快。水灰比对混凝土的孔隙结构影响极大,在水泥用量一定的条件下,增大水灰比,混凝土的孔隙率也随之增大,密实度降低,碳化速度增大。而水灰比小的混凝土由于水泥浆的组织密实,透气性较小,因而碳化速度较慢。同理,单位水泥用量多的混凝土碳化较慢,水灰比小的混凝土合成物多,中和所需的CO2量也多,中和反应需要的时间也较长。另一方面水灰比小的混凝土,水泥水化后残留水分少,混凝土密实性高,孔隙小,大孔少,CO2向混凝土内扩散的阻力较大,这也造成中和反应需要时间较长,碳化深度较小。通过试验得出当水灰比小于0.6时碳化深度较小,当水灰比大于0.75时碳化深度急剧加大。因此为了减少混凝土碳化引起的危害,适当控制水灰比是非常必要的。水灰比过大时,新生成的胶体水泥浆浓度低,水化后混凝土体内的多余游离水分往往先附着在骨料上,胶体与骨料粘结面积减小,粘结力下降,混凝土硬化时会产生细小裂纹,从而降低了混凝土强度。
水灰比过小时,胶体和晶体的材料不能充分形成,混凝土和易性差,混凝土振捣、密实很困难,如果在混凝土充分硬化后未水化水泥再遇水发生水化作用,水化产物造成的膨胀应力作用便有可能造成混凝土的开裂。所以为施工方便和保证质量,水灰比不宜小于0.5。2100433B
水灰比=水/水泥
水灰比过小会使水化热较大,混凝土易开裂,砼的和易性较差,不利于现场施工操作
水灰比过大会降低混凝土的强度
水灰比(W/C)与抗压强度f、水泥实际强度F的关系:f=A*F(C/W-B)
其中A、B是与骨料种类等的系数。例如:采用碎石时,A=0.53,B=0.20;采用卵石时A=0.49B=0.13
水灰比计算
混凝土强度等级小于C60时
水灰比W/C=αa×fce/(fcu,o αa×αb×fce)
αa、αb为回归系数
采用碎石时αa=0.53、αb=0.20,采用卵石时αa=0.49、αb=0.13
fce=γc×fce,g
γc为水泥强度等级值的富余系数,按实际统计资料确定
fce,g水泥强度等级值(MPa)
计算每立方米混凝土的水泥用量
Mco=mwo/(w/C)mwo为单位混凝土用水量
计算砂率
重量法:βs=Mso/(Mgo Mso)%
单位混凝土拌和物重量Mcp=Mco Mgo Mso Mwo
Mco每立方米混凝土水泥用量(kg)
Mgo每立方米混凝土粗骨料用量(kg)
Mso每立方米混凝土细骨料用量(kg)
Mwo每立方米混凝土水用量(kg)
现在应该说水胶比了 水胶比与混凝土强度是成反比的 胶凝材料是决定混凝土强度的重要因素 平均每加10L水 强度下降7%-8% 现在混凝土多半由商砼站供应 我是...
混凝土抗压强度与混凝土用水水泥的强度成正比,按公式计算,当水灰比相等时,高标号水泥比低标号水泥配制出的混凝土抗压强度高许多。所以混凝土施工时切勿用错了水泥标号。另外,水灰比也与混凝土强度成正比,水灰比...
经供参考:国标上对水灰比和最大水灰比都是有要求的。基本上水灰比>1甚至大于2时设计配合比时就不适当。水灰比过大,用水量过高,降低水泥强度,因为多余的水会外溢泌水,蒸发后形成为气孔,对强度影响非常...
拌制水泥浆、砂浆、混凝土时所用的水和水泥的重量之比。水灰比影响混凝土的流变性能、水泥浆凝聚结构以及其硬化后的密实度,因而在组成材料给定的情况下,水灰比是决定混凝土强度、耐久性和其他一系列物理力学性能的主要参数。对某种水泥就有一个最适宜的比值,过大或过小都会使强度等性能受到影响。
水灰比按同品种水泥固定。硅酸盐水泥、普通硅酸盐水泥、矿渣水泥为0.44;
火山灰水泥、粉煤灰水泥为0.46。
主要研究了水灰比对混凝土强度和氯离子电通量的影响。试验结果表明:水灰比增大混凝土的强度明显降低,氯离子电通量增大;水灰比从0.33增加到0.37和0.41时,混凝土28d氯离子电通量的增加幅度接近或超过了50%。
水灰比是砼配合比设计中一个重要参数,主要体现在其对砼性能(和易性、强度和耐久性等)的影响上。
“配合比”相同,水灰比越小,混凝土的强度越高。混凝土的流动性越小,坍落度就赿小,和易性也越。“配合比”相同,水灰比越大,混凝土的强度越低。混凝土的流动性越大,坍落度就赿大,和易性也越好。
水灰比太大,混凝土虽然流动性大,但是容易离析和泌水,和易性不好,严重影响混凝土强度 ,水灰比太小,混凝土流动性差,显得干涩影响泵送,对施工不利,但是对混凝土的强度有所提高。
对混凝土碳化的影响:
由于混凝土的碳化是CO2 向混凝土内扩散的过程,混凝土的密实程度越高,扩散的阻力越大,混凝土的碳化深度就越小。混凝土碳化的深度还受单位体积的水泥用量或水泥石中的Ca(OH)2含量的影响。水灰比越大,单位水泥用量越小,混凝土单位体积内的Ca(OH)2含量也就越少,扩散的阻力就越小,CO2就越容易进入混凝土体内,碳化速度也就越快。水灰比对混凝土的孔隙结构影响极大,在水泥用量一定的条件下,增大水灰比,混凝土的孔隙率也随之增大,密实度降低,碳化速度增大。而水灰比小的混凝土由于水泥浆的组织密实,透气性较小,因而碳化速度较慢。同理,单位水泥用量多的混凝土碳化较慢,水灰比小的混凝土合成物多,中和所需的CO2量也多,中和反应需要的时间也较长。另一方面水灰比小的混凝土,水泥水化后残留水分少,混凝土密实性高,孔隙小,大孔少,CO2向混凝土内扩散的阻力较大,这也造成中和反应需要时间较长,碳化深度较小。通过试验得出当水灰比小于0.6时碳化深度较小,当水灰比大于0.75时碳化深度急剧加大。因此为了减少混凝土碳化引起的危害,适当控制水灰比是非常必要的。水灰比过大时,新生成的胶体水泥浆浓度低,水化后混凝土体内的多余游离水分往往先附着在骨料上,胶体与骨料粘结面积减小,粘结力下降,混凝土硬化时会产生细小裂纹,从而降低了混凝土强度。
水灰比过小时,胶体和晶体的材料不能充分形成,混凝土和易性差,混凝土振捣、密实很困难,如果在混凝土充分硬化后未水化水泥再遇水发生水化作用,水化产物造成的膨胀应力作用便有可能造成混凝土的开裂。所以为施工方便和保证质量,水灰比不宜小于0.5。
水灰比=水/水泥
水灰比过小会使水化热较大,混凝土易开裂,砼的和易性较差,不利于现场施工操作
水灰比过大会降低混凝土的强度
水灰比(W/C)与抗压强度f、水泥实际强度F的关系:f=A*F(C/W-B)
其中A、B是与骨料种类等的系数。例如:采用碎石时,A=0.53,B=0.20;采用卵石时 A=0.49 B=0.13
水灰比是水泥浆、水泥砂浆或混凝土混合料中水与水泥的质量比值。是影响浆体和混合料流变特性、凝聚结构和硬化后密实度、强度、耐久性以及其他物理性能的重要参数。混凝土混合料的拌合水,有一部分为集料吸收和吸附,余下的水量与水泥质量之比称为净浆水灰比或净水灰比,对上述各种性质起关键作用,其值愈小(不低于水泥标准稠度用水量),则水泥石愈密实,强度和耐久性愈高,某些工程技术性能也愈好。其倒数称为灰水比。水灰比不仅影响硬化浆体和混凝土的强度、耐久性,还影响硬化浆体总空隙率和力学性能,胶结性水化产物的组成和性质,以及硬化水泥浆体结构等综合性能。拌合条件包括:搅拌机内型、搅拌参数、搅拌时间、搅拌工艺,这些都影响水灰比。混凝土的性能主要受混凝土空间物理结构和水泥粘结强度的决定, 拌合条件直接影响混凝土空间物理结构,影响混凝土空间结构的均匀性,可使水泥浆更好地发挥粘结作用。在相同的施工要求下,用好的拌合条件,不但可以提高效率,而且可以减小水灰比,提高经济性。搅拌机的类型对水灰比的影响。如果搅拌机的料流循环体积占拌合总体积的百分率越大, 在相同搅拌容积和搅拌时间下,搅拌均匀性越好。从百分率方面来比较, 行星搅拌机>双叶片双卧轴搅拌机>双卧轴搅拌机>鼓式搅拌机。搅拌效果也是如此,对于搅拌相同配合比的混凝土,在搅拌体积和搅拌时间相同的条件下,双叶片搅拌机较单叶片搅拌机搅拌效果要好。循环面积百分率越大,拌合料循环空间越大,拌和出来的混凝土空间结构也就越均匀,混凝土强度也就越大,因而相同强度要求下, 对水灰比要求较小 。