主厂房的主要尺寸为长度、宽度和高度。
立式机组主厂房 ①长度:主厂房总长度是由若干机组段构成的主机室和装配场长度总和而得。其中机组段长度取决于蜗壳、尾水管或发电机风道中的最大平面尺寸及辅助设备的布置和构造尺寸。低水头水电站主厂房的机组段长度主要由蜗壳平面尺寸控制,而中、高水头水电站厂房的机组段长度则由发电机风道尺寸控制。装配场的长度一般为机组段长度的1~1.2倍。②宽度:主厂房的宽度应从上部结构和下部结构的不同因素来考虑。上部宽度取决于吊车标准跨度、水轮发电机的定子外径、最大部件吊运方式、辅助设备的布置和人行通道所需宽度等条件。下部宽度取决于蜗壳和尾水管的尺寸。当设有主阀时,下部还要加宽,上部要考虑安装和检修主阀所需要的宽度。最后,要求上下两部分的宽度统一协调起来。③高度:主厂房的总高度与主厂房各层的要求高程有关,其中起主导作用的是水轮机安装高程(装机高程)。当它确定后,以它为基准,按照各主要设备的布置及运行、检修等要求,分别向上定出水轮机层地面高程、发电机装置高程、发电机层楼板高程、吊车轨道顶高程和层顶高程;向下定出尾水管底板高程和主厂房基础开挖高程等。
卧式机组主厂房 上部结构主要尺寸的确定方法,基本上与立式机组主厂房相同,下部结构就更为简单。①长度和宽度:发电机层的主机室的长度和宽度主要取决于整台机组安装、检修时能抽出和套入发电机转子所需要的距离和蜗壳外形尺寸,还要考虑主阀、调速器和机旁盘等辅助设备的布置。装配场的长度,一般可取一个机组段长度,宽度与主机室相同。尾水室长度根据尾水流出主厂房的具体尺寸而定,宽度可取所选用水轮机转轮直径的三倍。②高度:发电机层高度视吊车起吊最长部件的长度、吊件与固定设备的净空要求、吊钩与吊具距离、吊钩提升与轨道顶的极限距离、小车高度和屋顶结构等而定。尾水室高度为机座厚度、直锥管长度加上出口端至尾水室底板距离的总和。此外,还要考虑下游最低水位至少淹没直锥管出口30cm,下游最高水位尽量不淹及发电机层楼板而适当调整尾水室高度。
主厂房的主机室布置随机组主轴为竖直和水平两种不同的装置方式,而分为立式机组主机室和卧式机组主机室两大类。
立式机组主机室
机组主轴为竖直装置。以装设水轮发电机的上机架所在楼板面为界,以上为上部结构,以下为下部结构。上部结构因厂房采用户内式、露天式、半露天式、地下式、半地下式等类型(见水电站厂房)而采用不同的结构形式。立式机组主机室共分为四层。
①发电机层:装设机组和调速器操作柜、油压装置、机旁盘、励磁盘等设备的场所。为了装卸机组及其他的辅助设备,其上部设置移动式起重设备(吊车)。 水电站主厂房
②水轮机层:发电机层楼板以下与蜗壳顶部混凝土以上的空间。在机组部位有支承水轮发电机定子支座的发电机机墩(机座)。内腔称为定子坑或水轮机井。机墩上需要装设作用筒(接力器),预埋各种油、气、水系统管道和布置电缆、电线等。机墩的形式随机组容量不同而分为:块式机墩(矮机墩),它的刚度和抗震性能都很好,但混凝土用量大;圆筒式机墩,它受力均匀,抗震、抗扭性能好,用钢量省;环梁立柱式机墩和刚架式(框架式)机墩,材料用量较省,便于安装检修,但抗震、抗扭性能较差,噪声较大,适用于中小容量的机组。水轮机层上下游侧常分别布置水力机械设备(油、 气、 供水、排水系统设备和管道等)和电气设备(母线、电缆、互感器及厂用电配电设备等),互不干扰,有时在这层还布置励磁盘和能抽出深处积水的深井水泵。当发电机层楼面与水轮机层地面高差超过6~8m时,可考虑在其间加设出线层,布置水轮发电机引出线、中性点接地装置、母线和互感器等设备。 水电站主厂房
③蜗壳层:反击式水轮机引水设备的形状象蜗牛外壳称为蜗壳。蜗壳及其周围的混凝土结构的块体和空间部分称为蜗壳层。当水头小于40m时,多采用梯形断面的钢筋混凝土蜗壳;当水头大于40m时,宜采用圆形断面的铸铁、铸钢或钢板焊接的金属蜗壳。大型水电站厂房的金属蜗壳常外包混凝土。中小型水电站厂房的金属蜗壳常将下半部埋入混凝土内,以增加水轮机层的净高并减少工程量。蜗壳进人孔道通常设在蜗壳进口处的钢管的顶面或侧面。 水电站主厂房
④尾水管层:反击式水轮机的泄水设备(称为尾水管或吸出管)的顶部与基础板之间的空间。尾水管有直锥形和弯肘形两种。前者用钢板焊接而成,部分埋入混凝土中,仅适用于小型反击式和贯流式水轮机;后者用钢筋混凝土浇筑,适用于大中型立轴反击式水轮机。当采用冲击式水轮机的高水头水电站厂房,就无需设尾水管而仅有尾水室。
卧式机组主机室
机组的主轴是水平装置的,又称为横轴机组主机室,分发电机层和尾水室层。
①发电机层:指装设机组的楼板以上的空间。上部结构同立式机组主机室,布置水轮发电机、励磁机、金属蜗壳、水轮机、飞轮、尾水管弯段、调速器、配电盘、开关柜和梁式电动或手动吊车等机电设备。机组在发电机层布置方式有三种:横向布置,机组轴线与厂房纵轴线垂直,适用于机组台数较多的情况;纵向布置,机组轴线与主厂房纵轴线平行,适用于地形狭长及机组台数在3台以下的情况;斜向布置,机组轴线与厂房纵轴线成斜交布置,因这种布置发电机层显得不整齐,已很少采用。 ②尾水室层:机组以下的空间,有机座、阀坑和尾水室。尾水室内装直锥管,发电后的尾水从直锥管泄出,经尾水渠流入下游河道或下一个梯级水电站的渠道。
当主变压器有火灾危险的时候,立即将变压器油放到油池内,油池内上部的卵石将热油冷却并流入下面的油池(有些是通过管道流入附近的变压器事故油坑)内。当下雨时,卵石过滤地面雨水中的大体积物件,保证流入下面油池...
辅助建筑物
1、龙羊峡水电站距黄河发源地1684千米,下至黄河入海口3376千米,是黄河上游第一座大型梯级电站,人称黄河“龙头”电站。2、公伯峡水电站位于青海省循化撒拉族自治县和化隆回族自治县交界处的黄河干流上,...
在混凝土浇筑过程中如何进行测量控制,使模板安装的结构尺寸符合设计要求,不出现大的变形现象,是施工测量经常遇到的问题。本文介绍了蜗壳扭面、蜗壳底板、蜗壳内外侧墙的几种测量控制方法,较好地控制了结构尺寸,也大大的提高了生产效率。
水电站主厂房屋盖结构要求整体刚度大,能承受和传递桥机水平刹车力。对水电站主厂房屋盖特点进行了总结,并作了技术性、经济性分析,提出水电站主厂房屋盖选型原则。
批准号 |
50679009 |
项目名称 |
水电站主厂房与机组耦合系统动力学问题 |
项目类别 |
面上项目 |
申请代码 |
E0906 |
项目负责人 |
马震岳 |
负责人职称 |
教授 |
依托单位 |
大连理工大学 |
研究期限 |
2007-01-01 至 2009-12-31 |
支持经费 |
30(万元) |
我国在建和拟建的大型甚至巨型水电站日多,振动问题日益突出,而理论研究和工程实践相对滞后。机组旋转系统是主厂房的主振源,厂房是机组的主要支承体,两者通过轴承及其支承体系连接,其耦合系统的动力学问题十分复杂,其动力学理论、数学方法及振动预测控制成为目前该研究领域的难点之一。本课题重点建立耦合系统的动力学分析模型,探讨其线性甚或非线性动力学特性,包括系统刚度、固有振动特性、振动反应和稳定性判据等。项目研究的整体思路是,一方面研究厂房钢筋混凝土支承体系对机组轴系统转子动力学特性的影响,一方面研究机组轴系统和水轮机流道系统振动载荷对厂房结构体系的激励效应,通过巨型全耦联体系、超单元和子结构等数学模型构建方法,研究立式水轮发电机组轴系统和厂房钢筋混凝土结构的动力学相互作用机理和振动传递途径,为机组和厂房的动力分析、动态优化、减振防振抗振设计等提供理论基础和数值方法。
公司拥有先进的不同型号规格的制造设备、技术全面的工程技术人员和训练有素、经验丰富的制作、安装、施工队伍、在众多领域为广大用户提供了多项优质工程,尤其是招商港务(深圳公司)的局部可移动新式屋盖及湖北赤壁水电站主厂房双层彩板夹岩棉屋盖为行业内创新工程,为公司赢得了良好的社会信誉。2100433B