这个要根据具体项目具体分析,一般桥梁健康监测系统的费用主要包括前期桥梁检测的费用(桥梁普查、构件无损检测、动静载荷试验等)、传感器的费用(占很大一部分)、网站及服务器维护费用、传感器维护费用等。像我们...
较小直径的气体(氧气)扩散较快,较多进入分子筛固相,这样气相中就可以得到氮的富集成分。一段时间后,分子筛对氧的吸附达到平衡,根据碳分子筛在不同压力下对吸附气体的吸附量不同的特性,降低压力使碳分子筛解除...
欧式箱变中的电器设备元件,均选用定型产品,元器件的技术性能均满足相应的标准要求。为了可靠实现五防要求,各电器元件之间采用了机械联锁,各电器元件都安装在有足够强度和刚度的结构上,以便于导线的连接。操作采...
土木工程结构健康监测的研究是近年来国际学术研究的热点问题之一,涉及许多不同的研究领域,如数据采集系统、信号处理、结构分析等。土木工程智能健康监测与诊断系统由传感元件、信号采集、信号传输与处理、健康诊断与安全评估、结果输出等部分构成。引入智能传感器、信息融合、故障诊断、结构损伤探测理论等对结构健康监测与诊断系统进行简单介绍。
广州珠江黄埔大桥健康监测系统 广州珠江黄埔大桥位于黄埔区与番禺区之间,全长 7049米,采用悬索桥与 斜拉桥结合方式,南北主跨达 1108米。主桥由北汊独塔斜拉桥和南汊悬索桥组 成,桥面系均为钢箱梁结构。 由于地处亚热带与热带交界处, 桥梁所处环境湿度 较大,钢箱梁结构在潮湿环境中易于腐蚀。 为了降低桥梁各结构的表面湿度, 该 桥在建造时布设了除湿系统。 根据工程特点,本公司制定了温湿度健康监测系统监测珠江黄埔大桥温湿度 状况,主要应用产品为温湿度监测仪、 温湿度采集设备、 无线传输系统实现对钢 箱梁内、塔顶鞍室、锚碇等对湿度敏感的桥梁构件的连续监测, 为桥梁养护提供 依据。 系统主要实现功能: 1、温湿度采集系统具有远程监测、实时测量、实时报警的功能; 2、系统具备自动监测、手动控制等功能; 3、用户可根据实际情况, 设置温湿度的报警值, 该值应随季节的不同进行适 当 的调整;系统具备声
前言
第一章绪论
1.1结构健康监测的基本概念
1.1.1结构健康监测的定义
1.1.2结构损伤的定义与特征
1.1.3结构健康监测与无损检测的异同
1.2结构健康监测系统的组成与基本原理
1.3结构健康监测的主要研究内容
1.3.1有限元建模技术
1.3.2基于振动信息的结构损伤识别
1.3.3传感系统
1.3.4非线性结构系统识别
1.4结构健康监测的发展与研究现状
1.4.1大跨度桥梁
1.4.2超高层建筑与空间结构
1.4.3水利工程结构
1.4.4海洋平台结构
1.5结构健康监测展望
1.5.1目前研究存在的问题
1.5.2理论技术的发展趋势
1.5.3结构健康监测技术的新应用领域展望
问答题
参考文献
第二章数据获取与传输技术
2.1激励方法
2.1.1被动激励
2.1.2环境激励
2.1.3局部激励
2.2传感器及布设方法
2.2.1常用传感器
2.2.2智能传感器
2.2.3传感器最优布设方法
2.3数据传输
2.3.1有线传输
2.3.2无线传输
2.3.3互联网传输
问答题
参考文献
第三章现代信号处理技术
3.1傅里叶变换与自互谱法
3.1.1傅里叶变换
3.1.2短时傅里叶变换
3.1.3自互谱法
3.2 Wigner—Ville变换
3.3小波分析
3.3.1基本原理
3.3.2工程应用
3.4小波包分析
3.4.1基本原理
3.4.2工程应用
3.5希一黄变换
3.5.1希一黄变换基本原理
3.5.2改进希一黄变换基本原理
3.5.3工程应用
3.6盲源分离
3.6.1基本原理
3.6.2主要算法
3.6.3工程应用
3.7结构健康监测与检测中的实测数据处理
3.7.1应变
3.7.2位移、速度与加速度
3.7.3温度
3.7.4风
3.7.5其他测试物理量
问答题
参考文献
第四章常用结构损伤检测技术
4.1超声检测技术
4.1.1基本理论
4.1.2超声检测方法
4.1.3工程应用
4.2射线检测技术
4.2.1基本原理和方法
4.2.2照相检测
4.2.3 γ射线检测、中子射线检测及特点
4.3涡流检测技术
4.3.1基本原理
4.3.2阻抗分析法
4.3.3工程应用
4.4声发射检测技术
4.4.1原理及特点
4.4.2定位方法
4.4.3检测仪器
4.4.4工程应用
4.5红外检测技术
4.5.1基本原理
4.5.2检测仪器
4.5.3工程应用
4.6基于振动的无损检测技术
4.6.1基本原理
4.6.2检测方法
4.6.3发展概况
4.7基于统计识别检测技术
4.7.1基本原理
4.7.2识别方法
4.7.3识别流程
4.7.4发展概况
问答题
参考文献
第五章智能损伤检测技术
5.1光纤健康监测技术
5.1.1基础知识
5.1.2基本原理
5.1.3工程应用
5.2压电智能传感检测技术
5.2.1基本概念
5.2.2基本原理
5.2.3诊断方法
5.2.4应用概况
5.3 GPS监测技术
5.3.1 GPS定位技术
5.3.2 GPS中RTK技术
5.3.3基于GPS的结构健康监测
5.4神经网络技术
5.4.1神经网络及原理
5.4.2神经网络用于损伤检测的适应性、原理及应用
5.4.3基于概率神经网络的结构损伤检测与定位
5.4.4基于小波神经网络的结构损伤检测与定位
5.4.5基于模糊神经网络的结构损伤检测与定位
5.4.6基于粗糙集神经网络的结构损伤检测与定位
5.5数据融合技术
5.5.1基本理论
5.5.2数据融合算法
5.5.3数据融合用于损伤检测的适应性
5.5.4基于小波包分解的数据融合损伤检测
5.5.5基于小波分解与PNN的数据融合损伤检测
5.5.6基于FNN和加权平均数据融合损伤检测
问答题
参考文献
第六章结构健康监测系统与工程实践
6.1结构健康监测系统的设计原则与标准
6.1.1结构健康监测系统的设计原则
6.1.2结构健康监测系统的设计标准
6.1.3结构健康监测各个子系统的研究概况
6.2桥梁结构健康监测系统设计
6.2.1总体设计原则
6.2.2实时监测内容的选择
6.2.3主要参数的监测方法
6.2.4大佛寺长江大桥
6.2.5润扬长江大桥
6.3超高层建筑结构健康监测系统设计
6.3.1系统概述
6.3.2系统组成
6.3.3空间网架结构健康监测系统
6.3.4广州新电视塔
6.3.5高耸结构建造阶段环境振动测试与模态分析
6.4隧道施工监测系统设计
6.4.1超前地质预报
6.4.2监控量测
6.4.3隧道施工过程质量控制
6.4.4施工监控实施方案
6.4.5系统设计
6.4.6工程实例
问答题
参考文献2100433B
桥梁健康监测系统的设计是实施桥梁健康监测的第一步。目前关于桥梁健康监测系统设计的标准、原则还没有统一的说法。本文结合国内外已经安装的桥梁健康监测系统的特点,探讨桥梁健康设计的一些原则。
从已经安装的桥梁健康监测系统中可以看出,这些桥梁健康监测的测点布置的数量、监测项目有很大差异。这种差异一方面来自于桥梁结构形式和所处地理环境的差异,另一方面来自于各健康监测设计的目的和投资额度的不同。桥梁健康监测系统的设计要遵循“因桥而异、因桥制宜、经济实用、稳定可靠”的16字原则。
因桥而异、因桥制宜。不同地区、不同桥梁结构形式的健康监测的内容是不一样的。不同地区的气候、地质环境会有很大差别,桥梁健康监测的一部分内容就包括对桥址处环境的监测,比如风、地震、温度等。
经济实用、稳定可靠。桥梁健康监测系统的实施费用是昂贵的,因此,投资额是制约桥梁健康监测系统规模和设备的重要因素。健康监测系统的设计应作效益.成本分析,设计出经济实用、稳定可靠的健康监测系统。
基于以上分析,建议在桥梁健康监测系统设计时遵循以下步骤:
(1)针对具体桥梁,确定监测系统的目的和功能。
(2)分析桥梁的结构特点、环境状况、运营情况,确定桥梁健康监测系统的监测项目。
(3)建立桥梁有限元模型进行结构静动力分析,确定应力相对不利的位置及动力分析结果,结合工程经验、结构特点及测点优化理论综合确定测点布置方案。
(4)结合投资额度,广泛调研现代测试技术的发展,确定各监测项目传感器的选型 。2100433B
《桥梁结构健康监测》从桥梁结构的传感测试技术、基准有限元模拟、结构损伤预警与辨识、结构可靠度评估与疲劳寿命评估、结构健康监测系统的设计与实施等多方面,对桥梁结构健康监测与安全评估的相关问题进行了较为系统的介绍。