首先要求上一塔的塔顶温度高于一「一塔堪底温度(温差须大于27}),这样上一塔的塔顶蒸汽可为一下一塔提供大部分能量,同时一可自行压人下一塔再沸器,这种流程称为精馏塔的热祸合系统。热藕合精馏塔控制即为控制各塔操作状态以稳定热藕合操作。
可能原因: 1、精馏塔的有效塔板数降低了,说白了就是板式塔可能有坏的(比如浮阀塔板的浮阀有坏的),引起漏液等现象,降低了塔板效率,或者填料塔的填料液体分布不好,造成了精馏塔的分离效果差;-------...
精馏塔是进行精馏的一种塔式汽液接触装置,又称为蒸馏塔。有板式塔与填料塔两种主要类型。根据操作方式又可分为连续精馏塔与间歇精馏塔。 蒸气由塔底进入,与下降液进行逆流接触,两相接触中,下降液中的易挥发(低...
精馏塔是进行精馏的一种塔式汽液接触装置,还叫作蒸馏塔,分为板式塔与填料塔两种主要分类。根据操作方式又可分为连续精馏塔与间歇精馏塔-烟台正太压力容器。蒸馏塔/精馏塔是稀有金属钛等材料及其合金材料制造的...
对丙醇/丁醇/3-甲基丁醇/2-乙基丁醇组成的4组分物系的分离从完全热耦合原理出发,详细阐述了该物系精馏过程的建立模型到模拟计算,讨论了热耦合过程的自由度和隔板塔的最佳塔段数,指出了操作变量和完全热耦合在最佳热力学状态下应满足的条件,通过化工流程模拟软件Aspen Plus 11.1对该物系的分离工艺从简捷法到严格法计算和最后的优化设计,分析了模拟结果,相比一般的序列塔分离工艺,完全热耦合塔序列即隔板塔节能15.1%,设备材料节省约38%,节能效果明显。并且从用能分析方面讨论了隔板塔内隔板传热利弊和回收热量的多少以及隔板的设计要求。
丁二烯第二萃取精馏塔原先使用F1型浮阀塔板,分离效率低,塔板二侧存在液体滞流区,液体返混现象也很严重,影响了装置高负荷、长周期运行。选用高光洁度材料制造塔板、受液盘和浮阀,并将浮阀由F1型改为高效组合导向型,较好地解决了上述问题。
热电联产系统的中长期耦合机理分析的主要研究问题是在满足约束条件的前提下,达到经济性、节能性和环保性等等运行目标。考虑到分时电价、设备的维修使用成本、一次能源的价格、系统运行排出的碳化物与硫化物的数量等等因素,制定运行策略。如图1所示为某一系统的热负荷供给示意图。
热电联产系统的短时耦合机理分析的主要研究问题是在保证系统与电网联络线电功率恒定情况下,如何通过热电储能装置优化匹配实现功率实时自趋平衡。随着用电负荷的持续增加,各控制区域负荷的需求各异,区域电网间出于各自稳定性和经济性的需求,必须协议联络线传输的功率值。当系统发生负荷扰动时,能实现维持联络线功率为设定值的目的。
对于实时的互补特性分析,将以电网联络线电功率恒定为主要目标进行分析。如图2所示为某一典型的电网联络线自趋平衡示意图。图2中的实时功率为系统的实时负荷波动,但考虑到系统的经济性和稳定性,这样的波动会使电网大幅度波动而导致费用剧增,因此需要对此负荷需要调节,以使负荷趋于联络线的额定功率,如图2中的自趋平衡功率线所示,经过合适的设备匹配可以达到如此的效果。但是这样仍然不会完全和联络线额定功率线重合。
图2中,低于联络线额定功率的部分,就需要增加负荷,即可以将电能进行储存或者利用电能进行制热并将其储存,以满足电网联络线功率需要;在高于联络线额定功率部分,就需要降低负荷的使用,以减小电网的高峰,所需的电力由储能装置进行补充,这样的互补方式和调节方案可以满足实时功率条件下的电网联络线功率保持恒定值 。2100433B
控制耦合例子
public int y;
Public A(string x)
{ if (x=="true")
{ y=1;
}
Else
{ y=0;
}
}
Public void B ( )
{
if (y==1)
{
F( ); // F( )是系统自定义的函数
}
Else
{
G( ); // G( )是系统自定义的函数
}
}
模块A&B之间为控制耦合因为两个模块间传递的y值是用作控制信号的开关量。改善方法就是把B模块调用的函数直接写入A模块中,然后删除B模块。
控制耦合的缺点:
控制耦合增加了模块之间的复杂性
去除模块间控制耦合的方法:
(1)将被调用模块内的判定上移到调用模块中进行
(2)被调用模块分解成若干单一功能模块
流固耦合传热计算 的关键是实现流体与固体边界上的热量传递。由能量守恒可知 ,在流固耦合的交界面 ,固体传出的热量应等于流体吸收的热量,因此 ,流固边界面上的热量传递过程可表示为
在求解流固耦合的瞬态温度场时,流体区域可按准稳态流场处理,即不考虑流场的动量和湍方程,则其控制方程式
固体区域控制方程以其基本导热方程表示为
流固交界面上不考虑发生的辐射、烧蚀相变等过程,则流固交界面上满足能量连续性条件,即温度和热流密度相等。具体控制方程式为
上述构成了流固耦合瞬态温度场控制方程,可以使用分区瞬态紧耦合算法进行求解。即在每个[t,t Δt]时间步长内,完成如下计算步骤:
1) 假定耦合边界上的温度分布,作为流体区域的边界条件。
2) 对其中流体区域进行稳态求解,得出耦合边界上的局部热流密度和温度梯度,作为固体区域的边界条件。
3) 求解固体区域,得出耦合边界上新的温度分布,作为流体区域的边界条件。
4) 重复 2) 、3) 两步计算,直到收敛。