奇异矩阵是线性代数的概念,就是对应的行列式等于0的方阵。

奇异矩阵造价信息

市场价 信息价 询价
材料名称 规格/型号 市场价
(除税)
工程建议价
(除税)
行情 品牌 单位 税率 供应商 报价日期
矩阵 产品说明:6.5G带宽,支持EDID读写,支持DVI-D格式,面板/红外/RS-232控制;品种:数字矩阵;型号:DH-DVI16-16B;类型:视频;规格:16入/16出 查看价格 查看价格

东华盛业

13% 深圳市东华盛业科技有限公司重庆销售处
矩阵 产品说明:6.5G带宽,支持EDID读写,支持DVI-D格式,面板/红外/RS-232控制;品种:数字矩阵;型号:DH-DVI16-8B;类型:视频;规格:16入/8出 查看价格 查看价格

东华盛业

13% 深圳市东华盛业科技有限公司重庆销售处
矩阵 产品说明:6.5G带宽,支持EDID读写,支持DVI-D格式,面板/红外/RS-232控制;品种:数字矩阵;型号:DH-DVI16-4B;类型:视频;规格:16入/4出 查看价格 查看价格

东华盛业

13% 深圳市东华盛业科技有限公司重庆销售处
矩阵 产品说明:6.5G带宽,支持EDID读写,支持DVI-D格式,面板/红外/RS-232控制;品种:数字矩阵;型号:DH-DVI8-16B;类型:视频;规格:8入/16出 查看价格 查看价格

东华盛业

13% 深圳市东华盛业科技有限公司重庆销售处
矩阵 产品说明:6.5G带宽,支持EDID读写,支持DVI-D格式,面板/红外/RS-232控制;品种:数字矩阵;型号:DH-DVI4-8B;类型:视频;规格:4入/8出 查看价格 查看价格

东华盛业

13% 深圳市东华盛业科技有限公司重庆销售处
矩阵 产品说明:6.5G带宽,支持EDID读写,支持DVI-D格式,面板/红外/RS-232控制;品种:数字矩阵;型号:DH-DVI12-32B;类型:视频;规格:12入/32出 查看价格 查看价格

东华盛业

13% 深圳市东华盛业科技有限公司重庆销售处
矩阵 产品说明:6.5G带宽,支持EDID读写,支持DVI-D格式,面板/红外/RS-232控制;品种:数字矩阵;型号:DH-DVI8-4B;类型:视频;规格:8入/4出 查看价格 查看价格

东华盛业

13% 深圳市东华盛业科技有限公司重庆销售处
矩阵 产品说明:6.5G带宽,支持EDID读写,支持DVI-D格式,面板/红外/RS-232控制;品种:数字矩阵;型号:DH-DVI8-16B;类型:视频;规格:8入/16出 查看价格 查看价格

东华盛业

13% 深圳市东华盛业科技有限公司青海直销
材料名称 规格/型号 除税
信息价
含税
信息价
行情 品牌 单位 税率 地区/时间
奇异皱子棕 自然高1.5-2.0m 支数3支以上 盆栽 查看价格 查看价格

韶关市2015年5月信息价
奇异皱子棕 自然高(m)2.6-3袋苗 查看价格 查看价格

韶关市2014年6月信息价
奇异皱子棕 cm 自然高:1.5-2m 3支以上 查看价格 查看价格

韶关市2013年2月信息价
奇异皱子棕 自然高(m)1.5-23支以上 查看价格 查看价格

奇异皱子棕 自然高(m)3.1-3.54支以上 查看价格 查看价格

奇异皱子棕 自然高(m)2.1-2.53支以上 查看价格 查看价格

奇异皱子棕 自然高(m)2.6-34支以上 查看价格 查看价格

奇异皱子棕 自然高(m)3.1-3.54支以上 查看价格 查看价格

材料名称 规格/需求量 报价数 最新报价
(元)
供应商 报价地区 最新报价时间
成品仿真奇异造型植物 H:800 B:1250|1株 3 查看价格 四川蓉馨景观有限公司 四川   2022-08-31
矩阵 AV0808矩阵|9416台 4 查看价格 广州艾索电子产品有限公司 广东  广州市 2015-08-25
矩阵 HDMI矩阵,网络音频媒体矩阵32*32|1台 1 查看价格 广州博翱电子有限公司 广东  江门市 2016-10-09
AV矩阵 AV矩阵|1台 1 查看价格 广州市东巨信息科技有限公司 广东  韶关市 2012-05-16
VGA矩阵 VGA矩阵|7.0台 3 查看价格 广州邦实信息科技有限公司    2017-08-25
VGA矩阵 VGA矩阵|1台 1 查看价格 广州市东巨信息科技有限公司 广东  韶关市 2012-05-16
16路输出数字解码矩阵数字解码矩阵 16路输出数字解码矩阵数字解码矩阵|21台 3 查看价格 广州卡多尼信息技术有限公司 广东  深圳市 2016-10-28
HDMI矩阵 4进4出高清矩阵|2台 3 查看价格 广州市锐丰音响科技股份有限公司 全国   2020-07-24

首先,看这个矩阵是不是方阵(即行数和列数相等的矩阵。若行数和列数不相等,那就谈不上奇异矩阵和非奇异矩阵)。 然后,再看此矩阵的行列式|A|是否等于0,若等于0,称矩阵A为奇异矩阵;若不等于0,称矩阵A为非奇异矩阵。 同时,由|A|≠0可知矩阵A可逆,这样可以得出另外一个重要结论:可逆矩阵就是非奇异矩阵,非奇异矩阵也是可逆矩阵。 如果A为奇异矩阵,则AX=0有无穷解,AX=b有无穷解或者无解。如果A为非奇异矩阵,则AX=0有且只有唯一零解,AX=b有唯一解。

用途示例

非奇异矩阵还可以表示为若干个初等矩阵的乘积,证明中往往会被用到。

如果A(n×n)为奇异矩阵(singular matrix)<=> A的秩Rank(A)<n.

如果A(n×n)为非奇异矩阵(nonsingular matrix)<=> A满秩,Rank(A)=n.

注意

Eviews软件中当样本容量太少或是当变量间存在完全相关性时会提示"near singular matrix",意为"近奇异矩阵"。计量经济学范畴

在信号处理中,当信号协方差矩阵不是奇异矩阵时,则信号不相关或者部分相关。

特点

一个方阵非奇异当且仅当它的行列式不为零。

一个方阵非奇异当且仅当它代表的线性变换是个自同构。

一个矩阵半正定当且仅当它的每个特征值大于或等于零。

一个矩阵正定当且仅当它的每个特征值都大于零。

奇异矩阵概述常见问题

  • HDMI矩阵

    现在市场的价格战太离谱了,导致很多的商家都必须用低价来吸引客户,所以产品质量往往都得不到保障。力弘(LHLEEHAM)提供全系列会议视听系统矩阵切换控制器,包含产品有同轴矩阵系列AHD/TVI...

  • 数字矩阵与网络矩阵

    楼上恐怕还是不大了解,数字矩阵首先信号是数字信号,数字信号包括:SDI(标清)、HD-SDI(高清)这两种以前都是广播级信号,都是在广播电视应用的,但是现在随着电视会议的发展,已经出现高清电视会议系统...

  • vga视频矩阵,vga视频矩阵价格?

    vga视频矩阵,启耀科技有4,8,16,24,32,48,64路,您需要哪一路,每一路的价格不一样,输入输出路数越多价格越高,这种会议室用的很多的,切换很方便。

奇异矩阵概述文献

矩阵函数和函数矩阵 矩阵函数和函数矩阵

格式:pdf

大小:112KB

页数: 6页

评分: 4.4

矩阵函数求导 首先要区分两个概念:矩阵函数和函数矩阵 (1) 函数矩阵 ,简单地说就是多个一般函数的阵列, 包括单变量和多变量函数。 函数矩阵的求导和积分是作用在各个矩阵元素上,没有更多的规则。 单变量函数矩阵的微分与积分 考虑实变量 t 的实函数矩阵 ( )( ) ( )ij m nX t x t ×= ,所有分量函数 ( )ijx t 定义域相同。 定义函数矩阵的微分与积分 0 0 ( ) ( ) , ( ) ( ) . t t ij ijt t d d X t x t X d x d dx dx τ τ τ τ ? ? ? ??? ???= =? ??? ?? ?? ? ?? ?∫ ∫ 函数矩阵的微分有以下性质: (1) ( )( ) ( ) ( ) ( )d d dX t Y t X t Y t dt dt dt + = + ; (2) ( ) ( ) ( )( ) ( ) ( )

立即下载
矩阵 矩阵

格式:pdf

大小:112KB

页数: 5页

评分: 4.7

第五章 矩 阵 §5.1 矩阵的运算 1.计算 421 421 421 963 642 321 ; 412 503 310 231 4102 2013 ; n n b b b aaa 2 1 21 ,,, ; n n bbb a a a ,, 21 2 1 ; 113 210 121 121 011 132 113 210 121 . 2.证明,两个矩阵 A 与 B 的乘积 AB 的第 i 行等于 A 的第 i 行右乘以 B, 第 j 列等于 B的第 j 列左乘以 A. 3.可以按下列步骤证明矩阵的乘法满足结合律: (i) 设 B=( ijb )是一个 n p矩阵.令 j = njj bjbb ,,2,1 是 B的第 j 列, j=1,2,⋯ ,p. 又 设 pxxx ,,, 21 是 任 意 一 个 p 1 矩 阵 . 证 明 : B = ppxxx 211 . (ii)设 A 是一个

立即下载

A是可逆矩阵的充分必要条件是∣A∣≠0,即可逆矩阵就是非奇异矩阵。(当∣A∣=0时,A称为奇异矩阵)

1 矩阵A可逆的充要条件是A的行列式不等于0。

2 可逆矩阵一定是方阵。

3 如果矩阵A是可逆的,A的逆矩阵是唯一的。

4 可逆矩阵也被称为非奇异矩阵、满秩矩阵。

5 两个可逆矩阵的乘积依然可逆。

6 可逆矩阵的转置矩阵也可逆。

7 矩阵可逆当且仅当它是满秩矩阵。

奇异矩阵相关推荐
  • 相关百科
  • 相关知识
  • 相关专栏