去耦电容

去耦电容是电路中装设在元件的电源端的电容,此电容可以提供较稳定的电源,同时也可以降低元件耦合到电源端的噪声,间接可以减少其他元件受此元件噪声的影响。在电子电路中,去耦电容和旁路电容都是起到抗干扰的作用,电容所处的位置不同,称呼就不一样了。对于同一个电路来说,旁路(bypass)电容是把输入信号中的高频噪声作为滤除对象,把前级携带的高频杂波滤除,而去耦(decoupling)电容也称退耦电容,是把输出信号的干扰作为滤除对象。去耦电容用在放大电路中不需要交流的地方,用来消除自激,使放大器稳定工作。

详情

去耦电容主要是去除高频如RF信号的干扰,干扰的进入方式是通过电磁辐射。而实际上,芯片附近的电容还有蓄能的作用,这是第二位的。你可以把总电源看作密云水库,我们大楼内的家家户户都需要供水,这时候,水不是直接来自于水库,那样距离太远了,等水过来,我们已经渴的不行了。

实际水是来自于大楼顶上的水塔,水塔其实是一个buffer的作用。如果微观来看,高频器件在工作的时候,其电流是不连续的,而且频率很高,而器件VCC到总电源有一段距离,即便距离不长,在频率很高的情况下,阻抗Z=i*wL+R,线路的电感影响也会非常大,会导致器件在需要电流的时候,不能被及时供给。

而去耦电容可以弥补此不足。这也是为什么很多电路板在高频器件VCC管脚处放置小电容的原因之一(在vcc引脚上通常并联一个去藕电容,这样交流分量就从这个电容接地。)

有源器件

有源器件在开关时产生的高频开关噪声将沿着电源线传播。去耦电容的主要功能就是提供

一 个局部的直流电源给有源器件,以减少开关噪声在板上的传播和将噪声引导到地

去耦电容在集成电路电源和地之间的有两个作用:一方面是本集成电路的蓄能电容,另一方面旁路掉该器件的高频噪声。数字电路中典型的去耦电容值是0.1μF。这个电容的分布电感的典型值是5nH。0.1μF的去耦电容有5nH的分布电感,它的并行共振频率大约在7MHz左右,计算方法为ω=根号下(1/LC) 也就是说,对于10MHz以下的噪声有较好的去耦效果,对40MHz以上的噪声几乎不起作用。1μF、10μF的电容,并行共振频率在2MHz以上,去除高频噪声的效果要好一些。每10片左右集成电路要加一片充放电电容,或1个蓄能电容,可选10μF左右。最好不用电解电容,电解电容是两层薄膜卷起来的,这种卷起来的结构在高频时表现为电感。要使用钽电容或聚碳酸酯电容。去耦电容的选用并不严格,可按C=1/F,即10MHz取0.1μF,100MHz取0.01μF。

去耦电容造价信息

市场价 信息价 询价
材料名称 规格/型号 市场价
(除税)
工程建议价
(除税)
行情 品牌 单位 税率 供应商 报价日期
智能电容 MJDTL-30GB/14 查看价格 查看价格

13% 重庆宇轩机电设备有限公司
补偿器电容 YC-4,荧光灯用,配套支架及灯盘/4uf补 查看价格 查看价格

13% 杭州市江干区吉易照明电器经营部
补偿器电容 YC-12,荧光灯用,配套支架及灯盘/12uf 查看价格 查看价格

13% 杭州市江干区吉易照明电器经营部
自愈式低压并联电容 BSMJK0.4-15-3 查看价格 查看价格

天正

13% 广西玉林市易建商贸有限公司(玉林市厂商期刊)
4uf补偿器电容 YC-4,荧光灯用,配套支架及灯盘 查看价格 查看价格

华艺

13% 中山市华艺灯饰照明股份有限公司福建经销商
4uf补偿器电容 YC-4,荧光灯用,配套支架及灯盘 查看价格 查看价格

13% 海口圆月电磁荧光灯生产经营部
12uf补偿器电容 YC-12,荧光灯用,配套支架及灯盘 查看价格 查看价格

华艺

13% 中山市华艺灯饰照明股份有限公司福建经销商
12uf补偿器电容 YC-12,荧光灯用,配套支架及灯盘 查看价格 查看价格

13% 海口圆月电磁荧光灯生产经营部
材料名称 规格/型号 除税
信息价
含税
信息价
行情 品牌 单位 税率 地区/时间
荧光灯电容 4.75mFb 查看价格 查看价格

十个 韶关市2010年2月信息价
荧光灯电容 3.7mFb 查看价格 查看价格

十个 韶关市2009年10月信息价
荧光灯电容 3.7mFb 查看价格 查看价格

十个 韶关市2009年6月信息价
荧光灯电容 4.75mFb 查看价格 查看价格

十个 韶关市2009年6月信息价
荧光灯电容 3.7mFb 查看价格 查看价格

十个 韶关市2009年4月信息价
荧光灯电容 4.75mFb 查看价格 查看价格

十个 韶关市2009年2月信息价
荧光灯电容 3.7mFb 查看价格 查看价格

十个 韶关市2008年12月信息价
荧光灯电容 4.75mFb 查看价格 查看价格

十个 韶关市2008年12月信息价
材料名称 规格/需求量 报价数 最新报价
(元)
供应商 报价地区 最新报价时间
Ф50|1台 1 查看价格 德国SANDEIMU(萨德姆)二代地暖碳晶硅地暖 全国   2017-11-14
水罐 DN25外丝,最大流量6方/小时,与外置泵配套使用|4788套 1 查看价格 宁夏方块锅炉销售有限公司 宁夏  银川市 2015-11-17
电容 电容50uF/440V/105℃|1874台 4 查看价格 成都市海蓉照明灯具有限公司 四川  成都市 2015-09-04
电容 电容箱|1台 1 查看价格 中山开关厂 广东  广州市 2010-06-21
电容 电容补偿柜 PO2|1台 3 查看价格 广州华御电气设备有限公司 广东  深圳市 2017-06-01
启动电容 30VF启动电容|3396只 2 查看价格 重庆世邦五交化有限公司 重庆  重庆市 2015-05-13
补偿电容 飞牌补偿电容CP 12UF|5625支 4 查看价格 重庆世邦五交化有限公司 重庆  重庆市 2015-11-04
补偿电容 飞牌补偿电容CP 18UF|9165支 4 查看价格 重庆世邦五交化有限公司 重庆  重庆市 2015-07-23

在电子电路中,去耦电容和旁路电容都是起到抗干扰的作用,电容所处的位置不同,称呼就不一样了。对于同一个电路来说,旁路(bypass)电容是把输入信号中的高频噪声作为滤除对象,把前级携带的高频杂波滤除,而去耦(decoupling)电容也称退耦电容,是把输出信号的干扰作为滤除对象。去耦电容用在放大电路中不需要交流的地方,用来消除自激,使放大器稳定工作。从电路来说,总是存在驱动的源和被驱动的负载。如果负载电容比较大,驱动电路要把电容充电、放电,才能完成信号的跳变,在上升沿比较陡峭的时候,电流比较大,这样驱动的电流就会吸收很大的电源电流,由于电路中的电感,电阻(特别是芯片管脚上的电感,会产生反弹),这种电流相对于正常情况来说实际上就是一种噪声,会影响前级的正常工作。这就是耦合。

去耦电容就是起到一个电池的作用,满足驱动电路电流的变化,避免相互间的耦合干扰。

去耦和旁路都可以看作滤波。去耦电容相当于电池,避免由于电流的突变而使电压下降,相当于滤纹波。具体容值可以根据电流的大小、期望的纹波大小、作用时间的大小来计算。去耦电容一般都很大,对更高频率的噪声,基本无效。旁路电容就是针对高频来的,也就是利用了电容的频率阻抗特性。电容一般都可以看成一个RLC串联模型。在某个频率,会发生谐振,此时电容的阻抗就等于其ESR。如果看电容的频率阻抗曲线图,就会发现一般都是一个V形的曲线。具体曲线与电容的介质有关,所以选择旁路电容还要考虑电容的介质,一个比较保险的方法就是多并几个电容。

去耦电容常见问题

  • 耦合和去耦有什么区别,耦合电容和去耦电容的作用分别是什么,在电路中如何放置,有什么原则?

    藕合电容的做用是将前级的交流信号输送到下一级!藕合电容的位置是跨接在前级的输出和后级的输入两端!退藕电容的做用是将放大器级间窜藕的无益交流信号短路入地!退藕电容的位置是在某输入级的对地间!

  • 电容作用

    在通常使用的家用电器中,电容器主要有三个作用:1 在需要直流电源的电路中,对交流电源整流后用电容器滤波,得到平滑的直流电。如不用这个电容器,交流电源经整流后的脉动直流电流不能经滤波成为平滑的...

  • 什么样的电机需要加电容?电容作用?

    用在单相电机的电容一般有两种:一种是我们较常见的启动电容,顾名思义,由于单相电机形成的磁场不是旋转的,在启动时就有了电机转向的不确定性或难以启动。通过电容的移相作用,使电机形成旋转的磁场,从而电机顺利...

去耦电容文献

PDN电源地平面去耦电容网络设计 PDN电源地平面去耦电容网络设计

格式:pdf

大小:345KB

页数: 未知

评分: 4.7

提出根据工作频段的不同分层设计去耦电容网络的思想,给出电容器去耦原理和计算方法,分析过孔和引出线等不同封装方法对去耦电容阻抗的影响。利用目标阻抗法进行10 MHz~1 GHz的频带范围内PDN的端口阻抗设计,运用目标阻抗值和自谐振点确定去耦电容的种类、型号和数目。利用Ansoft SIwave工具对所设计的去耦电容网络去耦效果进行仿真模拟。仿真结果表明:电源地平面在高频下需要的电容阻抗很小,高频段的电容阻抗比低频段电容阻抗低一个数量级,但需要的去耦电容数目多达上百个。

立即下载
电容参数 电容参数

格式:pdf

大小:345KB

页数: 2页

评分: 4.6

一、电容的主要参数: 1、 电压 1) 额定电压:两端可以持续施加的电压,一般为直流电压,通常用 VDC。而专用于 交流电的则为交流有效值电压,通常为 VAC。 电容器的交直流额定电压换算关系 直流额定电压 VR/VDC 50 63 100 250 400 630 1000 交流额定电压 VR/VAC 30 40 63 160 200 220 250 2) 浪涌电压:电解电容特有的电压参数,是短时间可以承受的过电压,为额定电压的 1.15 倍。 3) 瞬时过电压:是铝电解电容特有电压参数,为可以瞬时承受的过电压,这个浪涌电 压约为额定电压的 1.3 倍,是铝电解电容的击穿电压。 4) 介电强度:电容额定电压低于电容中介质的击穿电压。一般为额定电压的 1.5~2.5 倍。如:铝电解电容的击穿电压约为额定电压的 1.3 倍;其它介质则通常为 1.75~2 倍以上。 5) 试验电压:薄膜电容

立即下载

去耦电容和旁路电容没有本质的区别,电源系统的电容本来就有多种用途,从为去除电源的耦合噪声干扰的角度看,我们可以把电容称为去耦电容(Decoupling),如果从为高频信号提供交流回路的角度考虑,我们可以称为旁路电容(By-pass).而滤波电容则更多的出现在滤波器的电路设计里.电源管脚附近的电容主要是为了提供瞬间电流,保证电源/地的稳定,当然,对于高速信号来说,也有可能把它作为低阻抗回路,比如对于CMOS电路结构,在0->1的跳变信号传播时,回流主要从电源管脚流回,如果信号是以地平面作为参考层的话,在电源管脚的附近需要经过这个电容流入电源管脚.所以对于PDS(电源分布系统)的电容来说,称为去耦和旁路都没有关系,只要我们心中了解它们的真正作用就行了。

此外,在精密的仪器电路中,为了提高电路工作的稳定性,常常将电容的旁路和滤波作用结合起来,并联电容来提高耦合滤波的效果 。

去耦:去除在器件切换时从高频器件进入到配电网络中的RF能量。去耦电容还可以为器件供局部化的DC电压源,它在减少跨板浪涌电流方面特别有用。

旁路:从元件或电缆中转移出不想要的共模RF能量。这主要是通过产生AC旁路消除无意的能量进入敏感的部分,另外还可以提供基带滤波功能(带宽受限)。

我们经常可以看到,在电源和地之间连接着去耦电容,它有三个方面的作用:一是作为本集成电路的蓄能电容;

二是滤除该器件产生的高频噪声,切断其通过供电回路进行传播的通路;

三是防止电源携带的噪声对电路构成干扰。

在电子电路中,去耦电容和旁路电容都是起到抗干扰的作用,电容所处的位置不同,称呼就不一样了。对于同一个电路来说,旁路(bypass)电容是把输入信号中的高频噪声作为滤除对象,把前级携带的高频杂波滤除,而去耦(decoupling)电容也称退耦电容,是把输出信号的干扰作为滤除对象。

在直流电源回路中,负载的变化会引起电源噪声。例如在数字电路中,当电路从一个状态转换为另一种状态时,就会在电源线上产生一个很大的尖峰电流,形成瞬变的噪声电压。配置去耦电容可以抑制因负载变化而产生的噪声,是印制电路板的可靠性设计的一种常规做法,配置原则如下:

●电源输入端跨接一个10~100uF的电解电容器,如果印制电路板的位置允许,采用100uF以上的电解电容器的抗干扰效果会更好。

●为每个集成电路芯片配置一个0.01uF的陶瓷电容器。如遇到印制电路板空间小而装不下时,可每4~10个芯片配置一个1~10uF钽电解电容器,这种器件的高频阻抗特别小,在500kHz~20MHz范围内阻抗小于1Ω,而且漏电流很小(0.5uA以下)。

●对于噪声能力弱、关断时电流变化大的器件和ROM、RAM等存储型器件,应在芯片的电源线(Vcc)和地线(GND)间直接接入去耦电容。

●去耦电容的引线不能过长,特别是高频旁路电容不能带引线。

说到电容,各种各样的叫法就会让人头晕目眩,旁路电容,去耦电容,滤波电容等等,其实无论如何称呼,它的原理都是一样的,即利用对交流信号呈现低阻抗的特性,这一点可以通过电容的等效阻抗公式看出来:Xcap=1/2лfC,工作频率越高,电容值越大则电容的阻抗越小.。在电路中,如果电容起的主要作用是给交流信号提供低阻抗的通路,就称为旁路电容;如果主要是为了增加电源和地的交流耦合,减少交流信号对电源的影响,就可以称为去耦电容;如果用于滤波电路中,那么又可以称为滤波电容;除此以外,对于直流电压,电容器还可作为电路储能,利用冲放电起到电池的作用。而实际情况中,往往电容的作用是多方面的,我们大可不必花太多的心思考虑如何定义。本文里,我们统一把这些应用于高速PCB设计中的电容都称为旁路电容。

一般滤波是用两个电容并联,一个大,一个小。如0.1UF 100PF 并联。

这样大的可以滤除低频,而且还可以蓄容,是电压纹波降低而小的电容滤除高频。起旁路作用。因为电容的特性是通高频,阻低频。这样组合比较好。一般在高频地方,都接一个小电容,起旁路作用。

电容的本质是通交流,隔直流,理论上说电源滤波用电容越大越好。但由于引线和PCB布线原因,实际上电容是电感和电容的并联电路,(还有电容本身的电阻,有时也不可忽略)

这就引入了谐振频率的概念:ω=1/(LC)1/2

在谐振频率以下电容呈容性,谐振频率以上电容呈感性。

因而一般大电容滤低频波,小电容滤高频波。

这也能解释为什么同样容值的STM封装的电容滤波频率比DIP封装更高。

至于到底用多大的电容,这是一个参考,电容谐振频率

电容值 DIP (MHz) STM (MHz)

1.0μF 2.5 5

0.1μF 8 16

0.01μF 25 50

1000pF 80 160

100 pF 250 500

10 pF 800 1.6(GHz)

不过仅仅是参考而已,用老工程师的话说——主要靠经验。

更可靠的做法是将一大一小两个电容并联,一般要求相差两个数量级以上,以获得更大的滤波频段。

旁路电容

旁路电容的主要功能是产生一个交流分路,从而消去进入易感区的那些不需要的能量。旁路电容一般作为高频旁路器件来减小对电源模块的瞬态电流需求。通常铝电解电容和钽电容比较适合作旁路电容,其电容值取决于PCB板上的瞬态电流需求,一般在10至470µF范围内。若PCB板上有许多集成电路、高速开关电路和具有长引线的电源,则应选择大容量的电容。"

去耦电容

有源器件在开关时产生的高频开关噪声将沿着电源线传播。去耦电容的主要功能就是提供一个局部的直流电源给有源器件,以减少开关噪声在板上的传播和将噪声引导到地。实际上,旁路电容和去耦电容都应该尽可能放在靠近电源输入处以帮助滤除高频噪声。去耦电容的取值大约是旁路电容的1/100 到1/1000。为了得到更好的EMC特性,去耦电容还应尽可能地靠近每个集成块(IC),因为布线阻抗将减小去耦电容的效力。陶瓷电容常被用来去耦,其值决定于最快信号的上升时间和下降时间。例如,对一个 33MHz的时钟信号,可使用4.7nF到100nF的电容;对一个100MHz时钟信号,可使用10nF的电容。选择去耦电容时,除了考虑电容值外,ESR值也会影响去耦能力。为了去耦,应该选择ESR值低于1欧姆的电容。

两者的区别:

从电路来说,总是存在驱动的源和被驱动的负载。如果负载电容比较大,驱动电路要把电容充电、放电,才能完成信号的跳变,在上升沿比较陡峭的时候,电流比较大,这样驱动的电流就会吸收很大的电源电流,由于电路中的电感,电阻(特别是芯片管脚上的电感,会产生反弹),这种电流相对于正常情况来说实际上就是一种噪声,会影响前级的正常工作。这就是耦合。

去藕电容就是起到一个电池的作用,满足驱动电路电流的变化,避免相互间的耦合干扰。

旁路电容实际也是去藕合的,只是旁路电容一般是指高频旁路,也就是给高频的开关噪声提高一条低阻抗泄防途径。高频旁路电容一般比较小,根据谐振频率一般是0.1u,0.01u等,而去耦合电容一般比较大,是10u或者更大,依据电路中分布参数,以及驱动电流的变化大小来确定。

旁路是把输入信号中的干扰作为滤除对象,而去耦是把输出信号的干扰作为滤除对象,防止干扰信号返回电源。这应该是他们的本质区别。

支富bao狂发10亿红包!赶快来抢!红包可在实体门店付款时抵扣,长按复制本消息,打开最新版支付宝就能领取!vN静辉垒捷忆M42难待

本文转自网络,版权归原作者,如果您觉得不好,请联系我们删除!

广告

旁路电容是把电源或者输入信号中的交流分量的干扰作为滤除对象。

有了旁路电容,将电源5V中的交流分量——波动进行滤除。将蓝色波形变成粉红色波形。一般来说,靠近电源放置。

去耦电容是芯片的电源管脚,由于自身用电过程中信号跳变产生的电源管脚对外的波形输出,我们用电容进行滤除。

把信号电源管脚,输出干扰作为滤除对象,防止干扰信号返回电源。

尖峰电流的形成:

数字电路输出高电平时从电源拉出的电流Ioh和低电平输出时灌入的电流Iol的大小一般是不同的,即:Iol>Ioh。以下图的TTL与非门为例说明尖峰电流的形成:

输出电压如右图(a)所示,理论上电源电流的波形如右图(b),而实际的电源电流保险如右图(c)。由图(c)可以看出在输出由低电平转换到高电平时电源电流有一个短暂而幅度很大的尖峰。尖峰电源电流的波形随所用器件的类型和输出端所接的电容负载而异。

产生尖峰电流的主要原因是:

输出级的T3、T4管短设计内同时导通。在与非门由输出低电平转向高电平的过程中,输入电压的负跳变在T2和T3的基极回路内产生很大的反向驱动电流,由于T3的饱和深度设计得比T2大,反向驱动电流将使T2首先脱离饱和而截止。T2截止后,其集电极电位上升,使T4导通。可是此时T3还未脱离饱和,因此在极短得设计内T3和T4将同时导通,从而产生很大的ic4,使电源电流形成尖峰电流。图中的R4正是为了限制此尖峰电流而设计。

这应该是他们的本质区别。去耦电容相当于电池,避免由于电流的突变而使电压下降,相当于滤纹波。具体容值可以根据电流的大小、期望的纹波大小、作用时间的大小来计算。去耦电容一般都很大,对更高频率的噪声,基本无效。旁路电容就是针对高频来的,也就是利用了电容的频率阻抗特性。只是旁路电容一般是指高频旁路,也就是给高频的开关噪声提高一条低阻抗泄防途径。高频旁路电容一般比较小,根据谐振频率一般是0.1u,0.01u等 ,而去耦合电容一般比较大,是10u或者更大,依据电路中分布参数,以及驱动电流的变化大小来确定。

旁路电容

旁路电容(bypass)是把输入信号中的高频噪声作为滤除对象,把前级携带的高频杂波滤除。

旁路电容的主要功能是产生一个交流分路,从而消去进入易感区的那些不需要的能量。旁路电容一般作为高频旁路器件来减小对电源模块的瞬态电流需求。 通常铝电解电容和钽电 容比较适合作旁路电容,其电容值取决于PCB板上的瞬态电流需求,一般在10至470µF范围内。

去耦电容

去耦电容(decoupling)也称退耦电容,是把芯片的电源脚的输出的干扰作为滤除对象。去耦电容在集成电路电源和地之间的有两个作用:一方面是本集成电路的蓄能电容,另一方面旁路掉该器件的高频噪声(电容对高频阻抗小,将之泻至GND)。

数字电路中,当电路从一个状态转换为另一种状态时,就会在电源线上产生一个很大的尖峰电流,形成瞬变的噪声电压,会影响前级的正常工作。这就是耦合。对于噪声能力弱、关断时电流变化大的器件和ROM、RAM等存储型器件,应在芯片的电源线(Vcc)和地线(GND)间直接接入去耦电容。

数字电路中典型的去耦电容值是0.1µF。这个电容的分布电感的典型值是5µH。 0.1µF的去耦电容有5µH的分布电感,它的并行共振频率大约在7MHz左右,也就是说,对于10MHz以 下的噪声有较好的去耦效果,对40MHz以上的噪声几乎不起作用。 1µF、10µF的电容,并行共振频率在20MHz以上,去除高频噪声的效果要好一些。 每10片左右集成电路要加一片充放电电容,或1个蓄能电容,可选10µF左右。最好不用电解电容,电解电容是两层薄膜卷起来的,这种卷起来的结构在高频时表现为电感。要使用 钽电容或聚碳酸酯电容。去耦电容的选用并不严格,可按C=1/F,即10MHz取0.1µF,100MHz取0.01µ。

案例分析:

采用去耦和不采用去耦的缓冲电路(测量结果)

为带去耦电容器和不带去耦电容器(C1 和C2)情况下用于驱动 R-C 负载的缓冲电路。我们注意到,在不使用去耦电容器的情况下,电路的输出信号包含高频 (3.8MHz) 振荡。对于没有去耦电容器的放大器而言,通常会出现稳定性低、瞬态响应差、启动出现故障以及其它多种异常问题。

带去耦合和不带去耦合情况下的电流

电源线迹的电感将限制暂态电流。去耦电容与器件非常接近,因此电流路径的电感很小。在暂态过程中,该电容器可在非常短的时间内向器件提供超大量的电流。未采用去耦电容的器件无法提供暂态电流,因此放大器的内部节点会下垂(通常称为干扰)。无去耦电容的器件其内部电源干扰会导致器件工作不连续,原因是内部节点未获得正确的偏置。

良好与糟糕 PCB 板面布局的对比

除了使用去耦电容器外,还要在去耦电容器、电源和接地端之间采取较短的低阻抗连接。将良好的去耦合板面布局与糟糕的布局进行了对比。应始终尝试着让去耦合连接保持较短的距离,同时避免在去耦合路径中出现通孔,原因是通孔会增加电感。大部分产品说明书都会给出去耦合电容器的推荐值。如果没有给出,则可以使用 0.1uF。

PCB布局时去耦电容摆放

对于电容的安装,首先要提到的就是安装距离。容值最小的电容,有最高的谐振频率,去耦半径最小,因此放在最靠近芯片的位置。容值稍大些的可以距离稍远,最外层放置容值最大的。但是,所有对该芯片去耦的电容都尽量靠近芯片。

下面的图1就是一个摆放位置的例子。本例中的电容等级大致遵循10倍等级关系。

还有一点要注意,在放置时,最好均匀分布在芯片的四周,对每一个容值等级都要这样。通常芯片在设计的时候就考虑到了电源和地引脚的排列位置,一般都是均匀分布在芯片的四个边上的。因此,电压扰动在芯片的四周都存在,去耦也必须对整个芯片所在区域均匀去耦。如果把上图中的680pF电容都放在芯片的上部,由于存在去耦半径问题,那么就不能对芯片下部的电压扰动很好的去耦。

电容的安装

在安装电容时,要从焊盘拉出一小段引出线,然后通过过孔和电源平面连接,接地端也是同样。这样流经电容的电流回路为:电源平面->过孔->引出线->焊盘->电容->焊盘->引出线->过孔->地平面,图2直观的显示了电流的回流路径。

第一种方法从焊盘引出很长的引出线然后连接过孔,这会引入很大的寄生电感,一定要避免这样做,这是最糟糕的安装方式。

第二种方法在焊盘的两个端点紧邻焊盘打孔,比第一种方法路面积小得多,寄生电感也较小,可以接受。

第三种在焊盘侧面打孔,进一步减小了回路面积,寄生电感比第二种更小,是比较好的方法。

第四种在焊盘两侧都打孔,和第三种方法相比,相当于电容每一端都是通过过孔的并联接入电源平面和地平面,比第三种寄生电感更小,只要空间允许,尽量用这种方法。

最后一种方法在焊盘上直接打孔,寄生电感最小,但是焊接是可能会出现问题,是否使用要看加工能力和方式。

推荐使用第三种和第四种方法。

需要强调一点:有些工程师为了节省空间,有时让多个电容使用公共过孔,任何情况下都不要这样做。最好想办法优化电容组合的设计,减少电容数量。

由于印制线越宽,电感越小,从焊盘到过孔的引出线尽量加宽,如果可能,尽量和焊盘宽度相同。这样即使是0402封装的电容,你也可以使用20mil宽的引出线。引出线和过孔安装如图4所示,注意图中的各种尺寸。

开关电源设计(第三版)

作者:(美)普利斯曼 著,莫瑞 著

当当 广告

购买

去耦电容相关推荐
  • 相关百科
  • 相关知识
  • 相关专栏