全截面试样:一种圆形截面试样壁面流体摩擦阻力测量装置,用于测量不同流速时圆形截面试样壁面的流体摩擦阻力,属于流体动力学测试技术领域。其主要包括模型支撑单元和阻力测量单元:模型支撑单元包括模型头、前滑动支撑环、后滑动支撑环、模型尾、固定架和支撑杆;阻力测量单元包括传力环、径向传力销、轴向传力销、传感器支撑套、传感器底座和传感器。被测试样为圆筒形,模型头和模型尾可制作成所需的形状和大小,试样攻角可调,传感器位于流道内部,信号线通过孔引出。该装置可以直接测量不同工况下不同性质流体对圆筒形试样壁面的流体摩擦阻力,可广泛应用于管道输送、水面及水下航行体等场合壁面摩擦阻力的研究。
全截面试样用途
利用全见面技术,支架的使用越来越成为平常的事情,对于人体和支架的交互作用有较好的理解始终是一个重要的临床议题。对于不同的支架设计、材料、表面涂层、以及附属的药物处理的研究要求对于装有支架的血管进行详尽的组织学和免疫组织化学分析,特别是在支架原位的细胞组织与金属的界面处。
正确的制备技术将会增强对细胞组织对临床安装支架(特别是在细胞组织与支架的界面处)的反应。此外,它还可以对扩展特性进行周密的评估。这种观察甚至能导致研制出经过改进的支架设计。
一种圆形截面试样壁面流体摩擦阻力测量装置,用于测量不同流速时圆形截面试样壁面的流体摩擦阻力,属于流体动力学测试技术领域。其主要包括模型支撑单元和阻力测量单元:模型支撑单元包括模型头、前滑动支撑环、后滑动支撑环、模型尾、固定架和支撑杆;阻力测量单元包括传力环、径向传力销、轴向传力销、传感器支撑套、传感器底座和传感器。被测试样为圆筒形,模型头和模型尾可制作成所需的形状和大小,试样攻角可调,传感器位于流道内部,信号线通过孔引出。该装置可以直接测量不同工况下不同性质流体对圆筒形试样壁面的流体摩擦阻力,可广泛应用于管道输送、水面及水下航行体等场合壁面摩擦阻力的研究。
今年的广联达软件大赛没有机试题,详情你可以点击首页的华春杯算量大赛介绍。里面也有相应的试题题目练习资源的。 广联达公司自己制定的规则不能随便就打破的,真是搞不明白你那里怎么会是那样,你在大赛排名里查...
岩土勘察多少米取一个试样合适,哪本规范明确多少米取一个试样?
规范中没用明确取样间距;但规范中要求每层不少于6个试样;所以,间距自定,孔多的每层一个,或2-3米间距取个样;孔少的,可以连续取样;审图就能通过了。
拉伸试样和冲击试样尺寸的确定要依据试样的产品种类不同而异。
T 0602-1993 沥青试样准备方法 1 目的与适用范围 1. 1 本方法规定了按本规程 T 0601 取样的沥青试样在试验前的试样准备方法。 1. 2 本方法适用于粘稠道路石油沥青、煤沥青等需要加热后才能进行试验的沥青试样,按此法准备 的沥青供立即在试验室进行各项试验使用。 1. 3 本方法也适用于在试验室按照乳化沥青中沥青、乳化剂、水及外加剂的比例制备乳液的试样进 行各项性能测试使用。每个样品的数量根据需要决定,常规测定宜不少于 600g。 2 仪具与材料 2. 1 烘箱:200,装有温度调节器。 2. 2 加热炉具:电炉或其它燃气炉(丙烷石油气、天然气)。 2. 3 石棉垫:不小于炉具上面积。 2. 4 滤筛:筛孔孔径 0.6mm。 2. 5 沥青盛样器皿:金属锅或瓷坩埚。
通过试验,实测不同橡胶集料体积掺量(0、5%、10%)的混凝土梁纯弯段侧面不同高度的应变,研究分析了不同橡胶颗粒体积分数对橡胶集料混凝土平截面假定的影响。试验结果表明:不同橡胶集料体积掺量的混凝土梁在荷载作用下,混凝土梁不同高度的应变基本上保持直线,应变值的大小与测点离中性轴的距离成正比,即橡胶集料混凝土梁的应变服从平截面假定。同时,在0~10%橡胶集料体积分数掺量区间内,存在着某一体积掺量值,使得混凝土试件在同荷载作用下、相同位置的应变值达到最大。
形状相同的同种材料,样条无缺口试样的冲击强度比缺口试样大。采用带缺口试样的目的是使缺口处试样的截面积大为减小,受冲击时,试样断裂一定发生在这一薄弱处,所有的冲击能量都能在这局部的地方被吸收,称为应力集中,从而提高试验的准确性。2100433B
截面积:一个几何体用一个平面截下后的面的面积称为截面积。
比如你用刀把整个西瓜切成两半,西瓜露出的红色椭圆面就是截面积。
补充:因为截面积不是固定的某种图形,不同的图形有不同的计算公式 不规则图形甚至要用到微积分来计算。
讨论大理岩试样围压下压缩和砂岩试样经历不同温度烘烤后的力学特性与纵波速度的关系。岩石不是线弹性材料,纵波速度、杨氏模量和强度是岩石试样力学性质的不同宏观表现。大理岩块曾经历地质应力,局部的低强度材料可使其附近材料承受较小荷载,晶粒之间维持相对较好的接触状态,因而试样初始纵波速度和强度呈负相关性。围压下压缩时大理岩试样承载能力随着变形增大可以大致保持恒定,但内部材料产生损伤弱化,损伤特性与围压、轴向变形有关。
对于在围压作用下压缩之后完全卸载的试样(以下称之为损伤试样),测量其纵波速度,再进行单轴压缩试验。4个试样A2,A3,A4,A5在围压为40MPa时轴向压缩至不同应变ε* ,及卸载后再次单轴压缩的轴向应力–应变曲线。其中试样A5轴向压缩应变达到0.015时试样承载的最大应力为182.7MPa,尚未达到峰值,峰值应力估计为185MPa。需要说明的是,大理岩试样进入延性变形阶段的屈服平台后,尽管承载能力不变,但内部不断产生塑性变形,材料强度降低。或者说,如果损伤试样仍进行原来围压或更高围压下的压缩,则其承载能力和杨氏模量并不会降低。这样的试验曲线文献上很多,不再给出。对于大理岩而言,轴向循环加载可以使岩样承载能力有所增加。但是,损伤试样进行单轴压缩时其强度和杨氏模量将会明显降低。
(1) 相同围压下,轴向压缩变形ε* 越大,试样产生的损伤越大。损伤试样的纵波速度VP*、单轴压缩强度σ0、平均模量Eav都随着经历的轴向变形增大而降低。对于初始强度相近的一组试样,如A1~A5和B1~B4,三者具有很好的正相关性。
(2) 三轴强度不同的试样,其初始纵波速度也不同,在相同围压下压缩经历相同的轴向压缩变形后,损伤试样再次单轴压缩的强度差异减小,如表中A3和A7,A5和A8。这是因为,三轴压缩时强度较高的试样承受的荷载较高,损伤较大,损伤试样单轴压缩的强度降低也就较多。
(3) 初始强度较高的试样初始纵波速度较低,而较大损伤引起纵波速度降低较大,试样之间的纵波速度差异将增大。如损伤试样A3和A7,A5和A8,其单轴压缩强度相当,但纵波速度差异较大。这也表明纵波速度与强度是岩石材料不同的力学性质,两者并无直接的关系。
(4) 围压下压缩至相同轴向变形,如A8,B3,C2,D1压缩至轴向应变0.015,A9,B4,C3,D2,E1压缩至轴向应变0.010,围压较低时试样产生的损伤较大,损伤试样的单轴压缩强度和平均模量也较低。不过,由于试样的初始纵波速度存在差异以及相应的测试误差,损伤试样的纵波速度变化与压缩围压的关系并不显著。
在30个粗砂岩试样中,有2个试样纵波速度为3630m/s,其余均为3060~3470m/s,大致成正态分布,平均值为3250m/s。相同温度烘烤前后3个试样纵波速度的大小关系并不一致,但烘烤后差异普遍减小。
粗砂岩试样经历100℃的烘烤后,波速基本没有变化;温度达到200℃之后,波速随温度增加单调降低;除600℃的3个试样纵波速度略有偏低外,其余大致成线性关系。
经历500℃和600℃烘烤的各3个试样、经历不同温度烘烤的6个试样的单轴压缩应力–应变全程曲线。所有试样的强度数据用常温下3个试样强度的平均值80.3MPa进行了归一化。试样烘烤之后,强度和变形特性都具有很大的离散性,与纵波速度的特征完全不同。可以看出,试样所受温度在500℃之内时,其平均模量变化不大,温度达到500℃以上时,平均模量开始降低。就此而言,纵波速度与平均模量没有直接的相关性。
试样轴向压缩过程中的变形包含3个部分:裂隙的闭合、颗粒间滑移和材料自身压缩。初期非线性变形含有上述3个部分。如前所述,黏结物质由于烘烤而刚度降低,引起初期切线模量的降低;而后期线性变形,即相应于平均模量的变形,主要由颗粒间的滑移和材料自身压缩构成,温度对两者的影响正好相反,因而在烘烤温度低于500℃时平均模量能够大致保持不变。当然试样经历较高温度的烘烤后,黏结物质的强度降低也会引起颗粒间滑移增大,引起平均模量降低。