"气体传感器"包括:半导体气体传感器、电化学气体传感器、催化燃烧式气体传感器、热导式气体传感器、红外线气体传感器、固体电解质气体传感器等。
气体传感器是化学传感器的一大门类。从工作原理、特性分析到测量技术,从所用材料到制造工艺,从检测对象到应用领域,都可以构成独立的分类标准,衍生出一个个纷繁庞杂的分类体系,尤其在分类标准的问题上目前还没有统一,要对其进行严格的系统分类难度颇大。接下来了解一下气体传感器的主要特性:
1、稳定性
稳定性是指传感器在整个工作时间内基本响应的稳定性,取决于零点漂移和区间漂移。零点漂移是指在没有目标气体时,整个工作时间内传感器输出响应的变化。区间漂移是指传感器连续置于目标气体中的输出响应变化,表现为传感器输出信号在工作时间内的降低。理想情况下,一个传感器在连续工作条件下,每年零点漂移小于10%。
2、灵敏度
灵敏度是指传感器输出变化量与被测输入变化量之比,主要依赖于传感器结构所使用的技术。大多数气体传感器的设计原理都采用生物化学、电化学、物理和光学。首先要考虑的是选择一种敏感技术,它对目标气体的阀限制(TLV-thresh-oldlimitvalue)或最低爆炸限(LEL-lowerexplosivelimit)的百分比的检测要有足够的灵敏性。
3、选择性
选择性也被称为交叉灵敏度。可以通过测量由某一种浓度的干扰气体所产生的传感器响应来确定。这个响应等价于一定浓度的目标气体所产生的传感器响应。这种特性在追踪多种气体的应用中是非常重要的,因为交叉灵敏度会降低测量的重复性和可靠性,理想传感器应具有高灵敏度和高选择性。
4、抗腐蚀性
抗腐蚀性是指传感器暴露于高体积分数目标气体中的能力。在气体大量泄漏时,探头应能够承受期望气体体积分数10~20倍。在返回正常工作条件下,传感器漂移和零点校正值应尽可能小。
气体传感器的基本特征,即灵敏度、选择性以及稳定性等,主要通过材料的选择来确定。选择适当的材料和开发新材料,使气体传感器的敏感特性达到最优。
根据测量对象与测量环境
根据测量对象与测量环境确定传感器的类型。 要进行-个具体的测量工作,首先要考虑采用何种原理的传感器,这需要分析多方面的因素之后才能确定。因为,即使是测量同一物理量,也有多种原理的传感器可供选用,哪一种原理的传感器更为合适,则需要根据被测量的特点和传感器的使用条件考虑以下一些具体问题:量程的大小;被测位置对传感器体积的要求;测量方式为接触式还是非接触式;信号的引出方法,有线或是非接触测量;传感器的来源,国产还是进口,价格能否承受,还是自行研制。在考虑上述问题之后就能确定选用何种类型的传感器,然后再考虑传感器的具体性能指标。
灵敏度的选择
通常,在传感器的线性范围内,希望传感器的灵敏度越高越好。因为只有灵敏度高时,与被测量变化对应的输出信号的值才比较大,有利于信号处理。但要注意的是,传感器的灵敏度高,与被测量无关的外界噪声也容易混入,也会被放大系统放大,影响测量精度。因此,要求传感器本身应具有较高的信噪比,尽量减少从外界引入的于扰信号。传感器的灵敏度是有方向性的。当被测量是单向量,而且对其方向性要求较高,则应选择其它方向灵敏度小的传感器;如果被测量是多维向量,则要求传感器的交叉灵敏度越小越好。
响应特性 (反应时间)
传感器的频率响应特性决定了被测量的频率范围,必须在允许频率范围内保持不失真的测量条件,实际上传感器的响应总有-定延迟,希望延迟时间越短越好。传感器的频率响应高,可测的信号频率范围就宽,而由于受到结构特性的影响,机械系统的惯性较大,因有频率低的传感器可测信号的频率较低。在动态测量中,应根据信号的特点 (稳态、瞬态、随机等)响应特性,以免产生过火的误差。
线性范围
传感器的线形范围是指输出与输入成正比的范围。以理论上讲,在此范围内,灵敏度保持定值。传感器的线性范围越宽,则其量程越大,并且能保证一定的测量精度。在选择传感器时,当传感器的种类确定以后首先要看其量程是否满足要求。但实际上,任何传感器都不能保证绝对的线性,其线性度也是相对的。当所要求测量精度比较低时,在一定的范围内,可将非线性误差较小的传感器近似看作线性的,这会给测量带来极大的方便。
这个问题问的有点宽泛。无线智能气体传感器是一种集成传感、无线通信、低功耗等技术的无线传感网络产品,可以化工、医药等化学物品生产、储存过程中,监测特定生产场所、特定环境的不同气体,如((PH3)、二氧化...
烟雾传感器和气体传感器是有区别的。烟雾传感器是一种技术先进,工作稳定可靠的传感器。烟雾中含有微小的颗粒粉尘,主要是针对微小颗粒的检测,在各种消防报警系统中被广泛运用。气体传感器是一种将某种气体体积分数...
对于半导体气体传感器,按照半导体与气体的相互作用是在其表面还是在其内部,可分为表面控制型和体控制型两种;按照半导体变化的物理性质,又可分为电阻型和非电阻型两种。电阻型半导体气体传感器是利用半导体接触气...
优点
红外气体传感器及仪器应用广泛,适用于监测近乎各种易气体。具有精度高、选择性好、可靠性高、不中毒、不依赖于氧气、受环境干扰因素较小、寿命长等显著优点。并在未来逐步成为市场主流。
缺点
由于正在处于起步阶段,技术壁垒高,市场占有率低,规模化生产程度低,造成成本高,基本在上千元左右。
半导气体传感器
这种类型的传感器在气体传感器中约占60%,根据其机理分为电导型和非电导型,电导型中又分为表面型和容积控制型.
(1 ) SnO2半导体是典型的表面型气敏元件,其传感原理是SnO2为n 型半导体材料。当施加电压时,半导体材科温度升高,被吸附的氧接受了半导体中的电子形成了O2或O2原性气体H2、CO、CH4存在时,使半导体表面电阻下降,电导上升,电导变化与气体浓度成比倒。NiO为p型半导体,氧化性气体使电导下降,对O2敏感。ZnO半导体传感器也属于此种类型。
半导体气体传感器
a. 电导型的传感器元件分为表面敏感型和容积控制型,表面敏感型传感材料为SnO2+Pd 、ZnO十Pt 、AgO、V 205 、金属酞青、Pt -SnO2。 表面敏感型气体传感器可检测气体为各种可燃性气体C0、NO2、 氟利昂。传感材料Pt -SnO2 的气体传感器可检测气体为可燃性气体CO、H2、CH4 。
b. 容积控制型传感材料为Fe2O8、la1-SSrxCOO8 和TiO2、CoO-MgO -SnO2体传感器可检测气体为各种可燃性气体CO、NO2 氟利昂。。传感材料Pt -SnO2
容积控制型半导体气体传感器可检测气体为液化石油气、酒精、空燃比控制、燃烧炉气尾气。
( 2) 容积控制型的是晶格缺陷变化导致电导率变化,电导变化与气体浓度成比例关系。
Fe2O8、TiO2属于此种,对可燃性气体敏感。
(3) 热线性传感器,是利用热导率变化的半导体传感器,又称热线性半导体传感器,是在Pt 丝线圈上涂敷SnO2层,Pt丝除起加热作用外,还有检测温度变化的功能。施加电压半导体变热,表面吸氧,使自由电子浓度下降,可燃性气体存在时,由于燃烧耗掉氧自由电子浓度增大,导热率随自由电子浓度增加而增大,散热率相应增高,使Pt 丝温度下降,阻值减小,P t丝阻值变化与气体浓度为线性关系。
这种传感器体积小、稳定、抗毒,可检测低浓度气体,在可燃气体检测中有重要作用。
( 4) 非电导型的FET场效应晶体管气体传感器,Pd -FET.场效应晶体管传感器,利用Pd 吸收H z 并扩散达到半导体Si 和Pd的界面,减少Pd 的功函,这种对H2、CO敏感。非电导型FET场效应晶体管气体传感器体积小,便于集成化,多功能,是具有发展前途的气体传感器。
固体电解质气体传感器
这种传感器元件为离子对固体电解质隔膜传导,称为电化学池,分为阳离子传导和阴离子传导,是选择性强的传感器,研究较多达到实用化的是氧化锆固体电解质传感器,其机理是利用隔膜两侧两个电池之间的电位差等于浓差电池的电势。稳定的氧化铬固体电解质传感器已成功地应用于钢水中氧的测定和发动机空燃比成分测量等。
为弥补固体电解质导电的不足,近几年来在固态电解质上镀一层气敏膜,把围周环境中存在的气体分子数量和介质中可移动的粒子数量联系起来。
接触燃烧式气体传感器
接触燃烧式传感器适用于可燃性气H2、CO、CH4的检测。可燃气体接触表面催化剂
Pt 、Pd 时燃烧、破热,燃烧热与气体浓富有关。这类传感器的应用面广、体积小、结构简单、稳定性好,缺点是选择性差。
电化学气体传感器
电化学方式的气体传感器常用的有两种
( 1 )恒电位电解式传感器
是将被测气体在特定电场下电离,由流经的电解电流测出气体浓度,这种传感器灵敏度高,改变电位可选择的检洌气体,对毒性气体检测有重要作用。
( 2) 原电池式气体传感器
在KOH电解质溶液中,Pt -Pb或Ag -Pb 电极构成电池,已成功用于检测O2,其灵敏度高,缺点是透水逸散吸潮,电极易中毒。
光学气体传感器
( 1 )直接吸收式气体传感器
红外线气体传感器是典型的吸收式光学气体传感器,是根据气体分别具有各自固有的光谱吸收谱检测气体成分,非分散红外吸收光谱对SO2、CO、CO2、NO等气体具有较高的灵敏度。
另外紫外吸收、非分散紫外线吸收、相关分光、二次导数、自调制光吸收法对NO、NO2、SO2、烃类( CH4) 等气体具有较高的灵敏度。
( 2)光反应气体传感器
光反应气体传感器是利用气体反应产生色变引起光强度吸收等光学特性改变,传感元件是理想的,但是气体光感变化受到限制,传感器的自由度小。
( 3 )气体光学特性的新传感器
光导纤维温度传感器为这种类型,在光纤顶端涂敷触媒与气体反应、发热。温度改变,导致光纤温度改变。利用光纤测温已达到实用化程度,检测气体也是成功的。
此外,利用其它物理量变化测量气体成分的传感器在不断开发,如声表面波传感器检测SO2、NO2、H2S、NH3、H2 等气体也有较高的灵敏度。
有害气体检测的气体传感器的一大作用,有害气体的检测有两个目的,第一是测爆,第二是测毒。所谓测爆是检测危险场所可燃气含量,超标报警,以避免爆炸事故的发生;测毒是检测危险场所有毒气体含量,超标报警,以避免工作人员中毒。
有害气体有三种情况第一、无毒或低毒可燃,第二、不燃有毒,第三、可燃有毒。针对这三种不同的情况,一般我们选择传感器需要选择不同的气体传感器。例如测爆选择可燃气体检测报警仪,测毒选择有毒气体检测报警仪等。其次我们需要选择气体传感器的类型,一般有固定式和便携式。生产或贮存岗位长期运行的泄漏检测选用固定式气体传感器;其他象检修检测、应急检测、进入检测和巡回检测等选用便携式气体传感器。
气体传感器类型有成百上千种,针对不同的气体传感器可能有不同的选用技巧,客户在选择气体传感器的时候如果自己不是很清楚可以咨询传感器厂家的技术人员,让他们为你选择合适的气体传感器,或者请传感器技术人员上面勘察以便更好的选择气体传感器。
一、着重于新气敏材料与制作工艺的研究开发
对气体传感器材料的研究表明,金属氧化物半导体材料Zn0,SIlo2,Fe203等己趋于成熟化,特别是在C比,C2H5OH,CO等气体检测方面。这方面的工作主要有两个方向:
1、是利用化学修饰改性方法,对现有气体敏感膜材料进行掺杂、改性和表面修饰等处理,并对成膜工艺进行改进和优化,提高气体传感器的稳定性和选择性;
2、是研制开发新的气体敏感膜材料,如复合型和混合型半导体气敏材料、高分子气敏材料,使得这些新材料对不同气体具有高灵敏度、高选择性、高稳定性。由于有机高分子敏感材料具有材料丰富、成本低、制膜工艺简单、易于与其它技术兼容、在常温下工作等优点,已成为研究的热点。
二、新型气体传感器的研制
用传统的作用原理和某些新效应,优先使用晶体材料(硅、石英、陶瓷等),采用先进的加工技术和微结构设计,研制新型传感器及传感器系统,如光波导气体传感器、高分子声表面波和石英谐振式气体传感器的开发与使用,微生物气体传感器和仿生气体传感器的研究。随着新材料、新工艺和新技术的应用,气体传感器的性能更趋完善,使传感器的小型化、微型化和多功能化具有长期稳定性好、使用方便、价格低廉等优点。
三、气体传感器智能化
随着人们生活水平的不断提高和对环保的日益重视,对各种有毒、有害气体的探测,对大气污染、工业废气的监测以及对食品和居住环境质量的检测都对气体传感器提出了更高的要求。纳米、薄膜技术等新材料研制技术的成功应用为气体传感器集成化和智能化提供了很好的前提条件。气体传感器将在充分利用微机械与微电子技术、计算机技术、信号处理技术、传感技术、故障诊断技术、智能技术等多学科综合技术的基础上得到发展。研制能够同时监测多种气体的全自动数字式的智能气体传感器将是该领域的重要研究方向。
应用于建设环境物联网。气体传感器在有毒、可燃、易爆、二氧化碳等气体探测领域有着广泛的应用,环境问题一直是全国乃至全世界最关心的话题之一,人类赖以生存的环境一直在遭受着严重的破坏,如何保护环境就需要建立环境监管机制,建设物联网成为必要,而气体传感器作为环境检测的必备传感器将有助于建设环境物联网。
传感器是物联网最核心和最基础的环节,是各种信息和人工智能的桥梁,其技术领域中重要门类之一的气体传感器,横跨功能材料、电子陶瓷、光电子元器件、MEMS技术、纳米技术、有机高分子等众多基础和应用学科。高性能的气体传感器能大大提高信息采集、处理、深加工水平,提高实时预测事故的准确性,不断消除事故隐患,大幅度减少事故特别是重大事故的发生。能有效实现安全监察和安全生产监督管理的电子化,变被动救灾为主动防灾,使安全生产向科学化管理迈进。
纳米气体传感器 在纳米技术中,纳米器件的研究水平和应用程度标志着一个国家纳米科技的总体水平, 而纳米传感器恰恰就是纳米器件研究中的一个极其重要的领域。 ? 随着工业生产和环境检测的迫切需要以及纳米技术的发展,纳米气敏传感器已获得长 足的进展。用零维的金属氧化物半导体纳米颗粒、碳纳米管及二维纳米薄膜等都可以作为 敏感材料构成气敏传感器 [1] 。用纳米材料作为敏感材料构成的气敏传感器具有常规传感 器不可替代的优点:一是纳米固体材料具有庞大的界面,提供了大量气体通道,从而大大 提高了灵敏度;二是大大降低了传感器工作温度;三是大大缩小了传感器的尺寸。因此, 它在生物、化学、机械、航空、军事等方面具有广泛的发展前途。 研究点滴: ? 美国伦斯勒理工学院 [2] 在 Nature 上发表文章,介绍了一种微型气体传感器样品,能 够非常灵敏地定量及定性分析大气中的各种气体。制作方法是:首
智能型 H2S传感器 气体检测行业领先者 圣凯安科技 NE SENSORTECHNOLOGY 特点CHARACTERISTIC 本安电路设计 ,可带电热拔插操作 专业精选原装进口 ,兼容红外、电化学、催化、半导体等多种传感器 自带温度补偿,出厂精准标定,使用时无需再标定 模拟电压 /电流和串口同时输出特点 ,方便客户调试及使用 最简化的外围电路 ,生产简单、操作方便 智能型硫化氢 H2S气体传感器是专门针对气体探 测器生产企业推出的新型智能传感器 , 主要为解决 气体探测种类繁多、各品种传感器互不兼容、生产 标定复杂、核心器件更换限制等问题。 采用我司生产的智能型 气体传感器则 只需开发一款产品 , 即可快速响应客户对不同气体 种类探测的需求 , 且生产过程简化 , 无需重新标定 , 大幅度降低企业的研发成本、生产成本 , 产品品 质也立即提升到国际一流水准。 该传感器操作方便、测量准确、
1.检测范围大,最高检测浓度达100%
2.工作稳定性好、使用寿命长、不存在触媒老化的问题。具有较高的稳定性和可靠性。
3.具有“广谱”性,可以检测几乎所有的气体。既可以检测所有可燃性气体,也可以检测惰性气体。而且在被测环境中有氧或无氧的情况下都可以实现气体浓度的检测。
4.检测装置简单、价格便宜、使用维护方便。这些优良特性是很多气体传感器不具备的。
存在检测精度差、灵敏度低、温度漂移大等缺陷,限制了热导气体的传感器的广泛应用。
气体传感器的一种
红外光学类气体传感器指利用不同气体对红外线不同波谱段的光谱吸收原理来检测气体的种类及浓度,利用此种原理工作的气体传感器称为红外光学类气体传感器。
此类传感器,比传统传感器优点在于,不受温度的太大影响。
热导式气体传感器属于电学类气体传感器,是能感知环境中某种气体及其浓度的一种装置或者器件,它能将与气体种类和浓度有关的信息转换成电信号,从而可以进行检测、监控、分析和报警。热导传感器是最早用于气体检测的气体传感器。