中文名 | 全数字集成式筒形阀电液同步控制系统 | 公布号 | CN101581326 |
---|---|---|---|
授权日 | 2009年11月18日 | 申请号 | 200910059617X |
申请日 | 2009年6月16日 | 申请人 | 东方电气集团东方电机有限公司、东方电机控制设备有限公司 |
地 址 | 四川省德阳市黄河西路188号 | 发明人 | 权君宗、伍英岩、刘时贵、郭跃川、谢俊 |
Int.Cl. | F15B21/02(2006.01)I | 代理机构 | 成都天嘉专利事务所(普通合伙) |
代理人 | 徐丰 | 类 别 | 发明专利 |
《全数字集成式筒形阀电液同步控制系统》属于水轮发电机组进水阀门控制领域,具体的讲是全数字集成式筒形阀电液同步控制系统。
在水电站水轮发电机组进水阀门之一,即筒形阀的使用中,除筒形阀本体的设计、制造、安装外,筒形阀的控制,即如何保证多只接力器的同步,成为筒形阀控制的关键技术问题。
截至2009年6月,中国国内筒形阀同步机构广泛采用的同步方式有两种:分别是机械同步方式和电液同步方式。
机械同步方式是在筒形阀体的上端,沿圆周均匀地布置多只液压接力器,每只接力器下端固定在阀体上。每只接力器的丝杠上端装有齿轮,通过链条使所有的齿轮同时运动。液压接力器活塞向上运动,筒形阀开启;液压接力器活塞向下运动,筒形阀关闭。各接力器活塞的同步移动由可逆传动的滚动螺旋副实现。滚动螺旋副是在接力器活塞杆上,固定一只滚动螺旋传动的螺母,螺母连接传动丝杠。当接力器活塞上、下移动,开启、关闭筒形阀时,丝杠随之正、反向旋转,通过丝杠上端的齿轮,将筒形阀的上下垂直运动,变为齿轮的径向旋转运动,齿轮带动链条,连动其他接力器的齿轮同速旋转,并反作用于其丝杠而实现多只接力器的同步。机械同步方式主要依靠丝杠、链条等运动部件相互配合,保证各接力器上下同步运动;接力器活塞的上升、下降运动由液压控制系统驱动。
机械同步方式有如下优点:
(1)筒形阀开启、关闭可自动、手动控制;
(2)在调试或电气失灵时,仍然可全手动开启、关闭筒形阀;
(3)管路少,连接点少,有利于电厂达标;
(4)调试、维护工作简单、方便。
机械同步方式也有如下缺点:
(1)同步精度无法量化;
(2)接力器油缸无自调节能力,链条同步对发生异步的油缸矫正能力差;
(3)只能定速启闭,不能按任意曲线启闭;
(4)在布置上场地空间要求较大。
电液同步方式由液压控制系统和电气控制系统组成,这两个控制系统缺一不可。液压控制系统必须由电气控制系统精密控制,电气控制系统必须通过液压控制系统执行,才能操作接力器,带动筒形阀开启与关闭。
基于当今世界的经验及技术,2009年6月前所有筒形阀控制装置生产厂家主要采用,而且可行的电液同步方案有两个:同轴油马达方案、伺服比例阀方案。主流电液同步方案是同轴油马达方案。
其优点:
(1)筒形阀开关控制规律可编程任意调整;
(2)对发生异步的接力器矫正能力好;
(3)可按程序指定启闭速度进行启闭控制。
其缺点:
(1)不能在任何操作方式下实现高精度同步;
(2)控制复杂;系统、管路、结构复杂,不利于电厂达标;
(3)系统安装、调试、维护困难;
(4)在场地布置上空间要求较大。
随着中国水电开发进度的加快,机组容量、尺寸越来越大,筒形阀的尺寸也越来越大,筒体重量也越来越重,原先比较成熟的机械同步方式就显示出其先天的缺陷性。只有采用电液同步方式才能满足现在水电开发大尺寸、大重量、大行程筒形阀的同步控制需求。但是,2009年6月前主要使用的前述两种电液同步方式的实际使用效果不是很理想。
图1为全数字集成式筒形阀电液同步控制系统结构示意图(6个数字量化缸);
图2为数字量化缸结构示意图;
图3为电气系统结构框架图(6个数字量化缸)。
所示附图中:1、数字量化缸,2、缸体,3、活塞,4、机械反馈机构,5、接力器位移传感器,6、反馈耦合装置,7、耦合齿轮,8、数字阀,9、液控单向阀,10、步进电机。
我们公司专门做LED电子显屏的,如果你有什么需要的话可以直接嗨我。
同步系统:就是与计算机显示器上的内容是完全同步显示的,所以说,如果计算机关闭了,那么LED显示屏也就不显示了。这种系统,主要是用于对实时性要求比较高的场所中。 异步系统:就是与计算机显示器上的内容是不...
led全彩同步控制系统很不错的,全彩同步控制系统的科技已经日趋发展完善,整体性能还是不错的,刷新高、亮度损失少;灰度好;带载面积大;软件外观优雅;操作简单,智能化操作;能侦测到每个接收卡的状态;值得推...
2016年12月7日,《全数字集成式筒形阀电液同步控制系统》获得第十八届中国专利优秀奖。
《全数字集成式筒形阀电液同步控制系统》包括液压控制系统和电气控制系统。其特征在于:所述液压控制系统包括数字量化缸,所述的数字量化缸包括缸体(2)、活塞(3)、机械反馈机构(4)、接力器位移传感器(5)、反馈耦合机构(6)、耦合齿轮(7)、数字阀(8)、液控单向阀(9)、步进电机(10)。所述数字阀(8)与步进电机(10)相连,所述耦合齿轮(7)安装在反馈耦合机构(6)与数字阀(8)阀芯之间。所述耦合齿轮(7)上安装有接力器位移检测传感器(5),所述机械反馈机构(4)连接反馈耦合机构(6)和活塞(3)。所述电气控制系统包括控制部分和功率部分,所述控制部分包括可编程序控制器;所述功率部分包括电源转换装置、电源选择装置、UPS电源、步进电机控制器。
机械反馈机构(4)的滚动螺旋传动螺母,固定在活塞(3)上;所述机械反馈机构(4)的反馈传动螺旋杆,通过反馈耦合机构(6),与耦合齿轮(7)、数字阀(8)阀芯螺旋耦合。机械反馈机构为扭转螺旋体,传感器为多圈旋转绝对位置编码器,数字量化缸数量为一个或者多个,可编程序控制器,包括机架、电源模块、CPU模块、开关量输入模块、开关量输出模块、模拟量输入模块、模拟量输出模块、步进电机控制模块、通讯模块。电气控制装置供电电源为220伏DC电源和220伏AC电源。
全数字集成式筒形阀电液同步控制系统,关键部件是组成液压控制系统基本单元的数字量化缸。数字量化缸是一个主动控制的液压执行机构。
全数字集成式筒形阀电液同步控制系统的液压控制系统,就是由几个基本单元---数字量化缸组成。数字量化缸的数量,就是筒形阀所需要接力器的数量。筒形阀所需要接力器的数量,是由设计计算决定。
在每个接力器顶部,安装有一套精密数字量化液压控制装置。液压控制装置与筒形阀接力器集成在一起,成为一个有机的整体,通过与接力器活塞巧妙联接的内置式高精度机械位置反馈机构,对筒形阀操作接力器的运动速度、位置进行实时反馈,形成位置闭环,速度可控,自动完成接力器的数字化运动操作。
我们把液压控制装置与筒形阀接力器的集成体,称为数字流体缸(简称:数字缸),更准确的应该称为数字量化缸(简称:数字缸)。
数字量化缸就是带精密数字量化液压控制装置的接力器,即我们将接力器完全精密数字量化。数字量化缸是一个高度集成的液压控制元件。它由缸体(2)、活塞(3)、机械反馈机构(4)、接力器位移传感器(5)、反馈耦合机构(6)、耦合齿轮(7)、数字阀(8)、液控单向阀(9)、步进电机(10)等组成。集成在数字量化缸内的步进电机(10),就是电气-液压控制系统的接口,它有如调速器的电液转换机构。步进电机(10)接收计算机发出的数字脉冲信号而转动,该转动带动数字阀(8)阀芯运动,通过反馈耦合机构(6)将阀芯旋转运动转变为直线运动,该直线运动打开数字阀(8)的阀口,从而将液压油引入操作接力器,并由液压油源驱动操作接力器活塞前进或后退。
在接力器活塞上,安装有可逆传动的机械反馈机构(4),机械反馈机构(4)是一种扭转螺旋体。机械反馈机构(4)的滚动螺旋传动螺母,固定在活塞(3)上;机械反馈机构(4)的反馈传动螺旋杆,通过反馈耦合机构(6),与耦合齿轮(7)、数字阀(8)阀芯螺旋耦合。在活塞(3)前进或后退过程中,由活塞(3)带动装在其上面的机械反馈机构(4)中滚动螺旋传动螺母的旋转运动,转化为反馈传动螺旋杆的直线运动。机械反馈机构(4)的直线运动,通过反馈耦合机构(6),一方面作用于数字阀(8)阀芯,使阀芯回到动作前原位,形成位置负反馈;另一方面作用于耦合齿轮(7),带动接力器位移传感器(5)转动,将活塞(3)的实际位置检测出来。
当步进电机(10)接收到电气控制系统发出的一个数字脉冲控制信号时,接力器活塞(3)就移动一个固定的行程(如0.01毫米)。这个固定的行程值,称为数字量化值,数字量化值单位为毫米。
根据系统控制精度的不同要求,数字量化值K可设计为0.01毫米、0.02毫米、0.05毫米、0.1毫米、0.5毫米、1.0毫米等。
数字量化值是由设计确定。通过内部一套机械反馈机构,严格保证控制脉冲与接力器活塞移动的对应关系,数字量化值。将接力器活塞的移动完全数字量化,使接力器活塞的移动量,只与控制脉冲数量有关。
在反馈耦合机构(6)与数字阀(8)阀芯之间,装有耦合齿轮(7),耦合齿轮(7)伸出轴上,安装有接力器位移检测传感器(5),传感器是一个多圈旋转绝对位置编码器,使之能准确知道接力器活塞(3)的实际位置。
在设计上,保证接力器活塞移动10毫米,编码器旋转1圈。编码器旋转1圈,有8192个测点;这意味着位移测量装置的分辨率为10毫米÷8192≈1.22微米,即精度可达1.5微米,10毫米的行程可分为8192个测点来检测。
数字量化缸的控制油路上,集成有液控单向阀(9),它用于系统压力油源消失闭锁,防止筒形阀在开启位置下滑。
在步进电机(10)的端部,有一个伸出轴。用工具手动旋转步进电机(10)的伸出轴,犹如给步进电机(10)施加控制脉冲信号,同样可以精确控制数字量化缸活塞运动。提供无电源时的纯手动操作。
数字量化缸将原来复杂的位置闭环和速度控制,变成了简单的数字脉冲控制。这样,既简化了控制系统,也简化了系统结构,同时提高了响应速度。
由于液压控制装置的所有元件均装在接力器内部,大大提高了系统的安全性和可靠性,大大提高了系统的抗干扰能力。这种结构特别适宜于恶劣的工作环境和粗放的维护水平,提高了设备的可靠性,基本上可以做到现场零调试和零维护,长期稳定工作。
数字量化缸还有一个特点,其活塞杆移动位移的实际误差是由设计、生产、装配决定的,在接力器活塞杆移动过程中,只有一个基础误差,没有累积误差。
数字量化缸接口,包含液压接口与电气接口。
液压接口:每只数字量化缸有一个油口P接压力油源(电液同步控制系统图中的P、X为同一油口);一个油口接排油(电液同步控制系统图中的T、Y为同一油口)。只需将数字量化缸的P油口,T油口,分别接到2根环形油管(1根压力油管P,1根回油管T)上,环形油管直接连接到电站油压设备,中间不再有其它液压设备及器件。
电气接口:电气控制系统与液压控制系统之间主要有2个电气接口,步进电机、位移传感器。步进电机是将电气系统控制信号,转化为液压控制系统执行机构;位移传感器是将液压控制系统执行情况,通过数字量化缸活塞的位置、行程变化,反馈给电气系统。步进电机、位移传感器通过电缆与筒形阀电气控制盘相连。
接力器位移检测传感器,是一个多圈旋转绝对位置编码器。与接力器活塞相连的传动机构与数字阀阀芯之间,装有耦合齿轮,编码器安装在耦合齿轮伸出轴上。耦合齿轮将接力器活塞直线运动,转变为旋转运动,在设计上,严格保证接力器活塞移动10毫米,编码器旋转1圈。这样,就将接力器实际位移,通过编码器检测出具体的实际位置。
电气控制系统附图是以6个接力器为例,对多只(3至12只)接力器,系统图相同,只是增减接力器数量即可。
控制部分由PLC、触摸屏、空气开关、继电器、信号灯、切换开关、控制按钮、接线座组成。
功率部分由电源转换装置、24伏DC电源选择装置、UPS电源、步进电机控制器、空气开关、继电器、信号灯、接线座组成。
电气控制装置的核心部分为PLC,由它控制与操作筒形阀开启、关闭,所有显示都在触摸屏界面上实现。现场操作命令,既可在触摸屏界面上操作,也可以在控制部分面板上操作。
可编程序控制器包括机架、电源模块、CPU模块、开关量输入模块、开关量输出模块、模拟量输入模块、模拟量输出模块、步进电机控制模块、通讯模块等。所有输入、输出模块,除筒形阀电气控制装置自己控制使用外,预留有一定余量的开关量输入、输出通道,模拟量输入、输出通道。
电气控制装置由220伏DC、220伏AC两类电源供电。220伏DC电源、220伏AC电源实现多路冗余。
正常状态下,第一个电源转换装置由第一路220伏AC供电,提供第一路24伏DC电源。当第一路220伏AC电源消失时,自动切换由220伏DC供电,由第二个电源转换装置,提供第二路24伏DC电源(第二路24伏DC电源始终处于热备用状态)。当第一路220伏AC电源恢复时,又自动恢复由第一路220伏AC供电。若第一路220伏AC电源、220伏DC同时消失,第一路24伏DC电源、第二路24伏DC电源也就同时消失,此时,就完全由第二路220伏AC电源供电,经第三个电源转换装置,提供第三路24伏DC电源,以保证筒形阀电气控制装置的可靠性。
第二路220伏AC电源,跨接在UPS电源上,正常状态下,UPS电源处于浮充状态。UPS电源的输出,一方面提供给第三个电源转换装置,使第三路24伏DC电源始终处于热备用状态;另一方面提供步进电机功率驱动模板220伏AC电源。这样即使外接220伏AC、220伏DC完全消失,UPS电源也可保证在一定时间内,筒形阀电液同步控制系统可以操作,就大大提高数字量化缸筒形阀电液同步控制系统的可靠性。
第三路220伏AC电源,提供控制部分内照明、通风风扇、电加热防潮、两相电源插座、三相电源插座等电源。
接力器位移传感器的24伏DC电源,由电气控制装置提供。位移传感器与电气控制装置之间信号接口,采用数字量通讯。
全数字集成式筒形阀电液同步控制系统,控制筒形阀开启、关闭,由多只数字量化缸驱动。正常工作时,只要由筒形阀电气控制系统,按照编制好的程序,向多只数字量化缸上步进电机输出同频率、同数量的控制脉冲信号;筒形阀即可按给定的运行曲线高精度同步升降;脉冲频率代表接力器运行速度,脉冲总数代表行程,一一对应。
如果需要单独动作筒形阀某个数字量化缸时,只须给需要单独的数字量化缸发控制脉冲信号即可。这为筒形阀的初期安装、调试、纠偏、矫正提供了极大的方便。
集成于数字量化缸上的位移传感器,实时检测各数字量化缸实际位置、行程,并将检测信号实时送到筒形阀电气控制系统,筒形阀电气控制系统接收数字量化缸位置、行程信号,并测量、监视、分析、处理,并同时判定多只数字量化缸同步情况。
虽然筒形阀开启、关闭,在同频率、同数量的脉冲信号控制下,可以保持多只数字量化缸高精度同步升降运动。但为了增加系统可靠性,我们还是将数字量化缸位移传感器信号,送入电气控制系统,一方面做系统显示、另一方面构成一个大的闭环控制系统,既完成测量、监视、分析、处理等功能,使整个系统具备双重分布闭环控制功能。
保持筒形阀多只数字量化缸同步,是筒形阀控制中的重要环节。多只数字量化缸是否同步,我们通过多只数字量化缸位移信号,来测量、判定。多只数字量化缸的实际位置、行程,是由位移传感器、位移测量单元共同完成。位移传感器集成于数字量化缸内,位移测量单元在电气控制盘内。
《全数字集成式筒形阀电液同步控制系统》所涉及的电液同步控制系统,既有机械同步方式的优点,又能克服2009年6月前电液同步方式的缺点,比2009年6月前电液同步方式可靠性高、控制精度高,结构简单,安装、操作、维护方便。
一种全数字集成式筒形阀电液同步控制系统,包括液压控制系统和电气控制系统,其特征在于:所述液压控制系统为数字量化缸,所述的数字量化缸包括缸体、活塞、机械反馈机构、接力器位移传感器、反馈耦合机构、耦合齿轮、数字阀、液控单向阀、步进电机,所述数字阀与步进电机相连,所述耦合齿轮安装在反馈耦合机构与数字阀阀芯之间,所述耦合齿轮上安装有接力器位移检测传感器,所述机械反馈机构连接反馈耦合机构和活塞,所述电气控制系统包括控制部分和功率部分,所述控制部分包括可编程序控制器;所述功率部分包括电源转换装置、电源选择装置、步进电机控制器。
所述的机械反馈机构的滚动螺旋传动螺母,固定在活塞上;所述机械反馈机构的反馈传动螺旋杆,通过反馈耦合机构,与耦合齿轮、数字阀阀芯螺旋耦合。
所述数字量化缸是指液压控制装置与筒形阀接力器集成为一个整体。
所述机械反馈机构为扭转螺旋体。
所述传感器为多圈旋转绝对位置编码器。
所述可编程序控制器,包括电源模块、CPU模块、开关量输入模块、开关量输出模块、模拟量输入模块、模拟量输出模块、步进电机控制模块、通讯模块。
所述电气控制装置供电电源为220伏DC电源和220伏AC电源。
《全数字集成式筒形阀电液同步控制系统》具有以下优点:
一、全数字集成式筒形阀电液同步控制系统,摒弃了传统的从动控制理念,采用主动控制模式。传统的从动控制,是对控制对象施加控制信号,执行机构执行,用传感器检测控制对象的运动状态,将控制对象的运动情况反馈到控制器。在控制器内与目标值进行多次比较、调节、修正,形成闭环反馈控制系统,使控制对象最终到达预定目标值。在目标值周围,系统始终在进行随动闭环反馈动态调节。
《全数字集成式筒形阀电液同步控制系统》接力器活塞运动控制,是电气系统根据目标值,给出一定量的控制脉冲,液压系统就自动按数字量化值叠加动作,直至目标值。通俗地说,就是想让接力器活塞走多少位移量,就给接力器活塞位移量÷数字量化值个的控制脉冲,接力器活塞就自动走给定的位移量;
二、整个系统控制(包括电气系统和液压系统),从行程检测、控制信号、接力器的液压运动操作,全程实现了精密数字化。接力器位置检测采用多圈旋转绝对位置编码器。在设计上,严格保证接力器活塞移动10毫米,编码器旋转1圈。编码器旋转输出信号,就是标准的数字信号。
接力器活塞,在液压油操作下,是以数字量化值运动。控制脉冲与接力器活塞移动位移,具有严格的对应关系。
三、筒形阀任何开启与关闭操作,接力器都是高精度同步;
四、对发生异步的操作接力器(油缸)具有很强的矫正能力;
五、接力器位置检测精度高;
六、即使系统压力油源消失,也可保持筒形阀在任意开度位置(包括全开位置)长期基本锁定不变;
七、系统结构简单、器件少。液压控制系统,就是几只数字量化缸。具体数量与操作接力器数量一致,它是由筒形阀结构设计决定。可大大减少了安装空间,减少了工地安装与调试的时间。
1、一种全数字集成式筒形阀电液同步控制系统包括液压控制系统和电气控制系统,其特征在于:所述液压控制系统为数字量化缸,所述的数字量化缸包括缸体(2)、活塞(3)、机械反馈机构(4)、接力器位移传感器(5)、反馈耦合机构(6)、耦合齿轮(7)、数字阀(8)、液控单向阀(9)、步进电机(10),所述数字阀(8)与步进电机(10)相连,所述耦合齿轮(7)安装在反馈耦合机构(6)与数字阀(8)阀芯之间,所述耦合齿轮(7)上安装有接力器位移检测传感器(5),所述机械反馈机构(4)连接反馈耦合机构(6)和活塞(3);所述电气控制系统包括控制部分和功率部分,所述控制部分包括可编程序控制器,所述功率部分包括电源转换装置、电源选择装置、步进电机控制器。
2、根据权利要求1所述的全数字集成式筒形阀电液同步控制系统,其特征在于所述的机械反馈机构(4)的滚动螺旋传动螺母,固定在活塞(3)上;所述机械反馈机构(4)的反馈传动螺旋杆,通过反馈耦合机构(6),与耦合齿轮(7)、数字阀(8)阀芯螺旋耦合。
3、根据权利要求2所述的全数字集成式筒形阀电液同步控制系统,其特征在于所述机械反馈机构为扭转螺旋体。
4、根据权利要求3所述的全数字集成式筒形阀电液同步控制系统,其特征在于所述传感器为多圈旋转绝对位置编码器。
5、根据权利要求4所述的全数字集成式筒形阀电液同步控制系统,其特征在于所述数字量化缸数量为一个或者多个。
6、根据权利要求1所述的全数字集成式筒形阀电液同步控制系统,其特征在于所述可编程序控制器,包括电源模块、CPU模块、开关量输入模块、开关量输出模块、模拟量输入模块、模拟量输出模块、步进电机控制模块、通讯模块。
7、根据权利要求6所述的全数字集成式筒形阀电液同步控制系统,其特征在于所述电气控制装置供电电源为220伏DC电源和220伏AC电源。
设计了一种集成式PCM组合数字压力阀。该阀由二通插装式主阀和插入组合式数字先导阀组组成 ,具有结构紧凑、体积小、便于加工和维修等特点 ,在计算机实时控制的精度要求不是很高的电液系统中 ,可取代伺服阀或比例阀。
阐述了电液集成式阀门遥控系统,针对系统中的控制模块进行功能分析,提出了控制模块的MiniARM嵌入式系统设计方案。
按比例元件的类型来分类,可分为比例节流控制和比例容积控制二大类。比例节流用在功率较小的系统,而比例容积控制用在功率较大的场合。
目前,最通用的分类方式是按被控对象(量或参数)来进行分类。则电液比例控制系统可以分为:
1、比例流量控制系统;
2、比例压力控制系统;
3、比例流量压力控制系统;
4、比例速度控制系统;
5、比例位置控制系统;
6、比例力控制系统;
7、比例同步控制系统。
电液比例控制系统可按不同的分类原则进行分类:
① 按所用的电液比例控制元件的种类可分为:电液比例压力控制系统、电液比例流量控制系统、电液比例方向控制系统和电液比例变量泵控制系统。
② 按被控物理量种类可分为:电液比例位置控制系统、电液比例速度控制系统和电液比例力控制系统。
③ 按系统输出信号是否反馈可分为:闭环系统和开环系统。
④ 按对液压执行元件的控制方式可分为:阀控系统和泵控系统。
1、塑料注射成型机电液比例控制系统
塑料注射成型机系统是典型的多级压力、多级速度控制系统。该机在工作循环中按工艺过程规定不断转换压力和速度。前例注射机液压系统采用传统开关阀,元件多,电气控制系统也复杂。如果采用电液比例控制系统,就可使系统简化,控制性能更好,被控参数平稳转换。
2、液压电梯电液比例控制系统
液压电梯的轿厢用液压缸顶升,轿厢及负载重力、惯性力由液压缸传给地基。这种电梯无牵引机房,对建筑设计有利,近年来得到迅速发展。电梯运行具有特定的启动加速和制动减速,为乘客提供快捷、舒适、安全的服务。
3、电液比例加载系统
液压系统中力和转矩的控制通过压力控制实现。压力控制是基础。在工业生产中,各种加载装置都可以采用比例压力控制系统,如材料试验机、压力容器疲劳寿命试验系统、压力传感器老化稳定系统等。 2100433B