平衡精度是指旋转体平衡后,允许存在不平衡量的大小。
中文名称 | 平衡精度 | 外文名称 | balancing precision |
---|---|---|---|
应用学科 | 物理学 | 评价标准 | 平衡精度等级 |
各类机器所使用的平衡方法较多,例如单面平衡(亦称静平衡)常使用平衡架,双面平衡(亦称动平衡)使用各类动平衡试验机。静平衡精度太低,平衡时间长;动平衡试验机虽能较好地对转子本身进行平衡,但是对于转子尺寸相差较大时,往往需要不同规格尺寸的动平衡机,而且试验时仍需将转子从机器上拆下来,这样明显是既不经济,也十分费工(如大修后的汽轮机转子)。特别是动平衡机无法消除由于装配或其它随动元件引发的系统振动。使转子在正常安装与运转条件下进行平衡通常称为"现场平衡"。现场平衡不但可以减少拆装转子的劳动量,不再需要动平衡机;同时由于试验的状态与实际工作状态二致,有利于提高测算不平衡量的精度,降低系统振动。国际标准ISOl940一1973(E)"刚体旋转体的平衡精度"中规定,要求平衡精度为G0.4的精密转子,必须使用现场平衡,否则平衡毫无意义。
现代的动平衡技术是在本世纪初随着蒸汽透平的出现而发展起来的。随着工业生产的飞速发展,旋转机械逐步向精密化、大型化、高速化方向发展,使机械振动问题越来越突出。机械的剧烈振动对机器本身及其周围环境都会带来一系列危害。虽然产生振动的原因多种多样,但普遍认为"不平衡力"是主要原因。据统计,有50%左右的机械振动是由不平衡力引起的。因此,有必要改变旋转机械运动部分的质量,减小不平衡力,即对转子进行平衡。
造成转子不平衡的因素很多,例如:转子材质的不均匀性,联轴器的不平衡、键槽不对称,转子加工误差,转子在运动过程中产生的腐蚀、磨损及热变形等。这些因素造成的不平衡量一般都是随机的,无法进行计算,需要通过重力试验(静平衡)和旋转试验(动平衡)来测定和校正,使它降低到允许的范围内。应用最广的平衡方法是工艺平衡法和整机现场动平衡法。作为整机现场动平衡技术的一个重要分支,在线动平衡技术也正处于蓬勃发展之中,很有前途。由于工艺平衡法是起步最早的一种经典动平衡方法。
常用机械中包含着大量的作旋转运动的零部件,例如各种传动轴、主轴、电动机和汽轮机的转子等,统称为回转体。在理想的情况下回转体旋转时与不旋转时,对轴承产生的压力是一样的,这样的回转体是平衡的回转体。
但工程中的各种回转体,由于材质不均匀或毛坯缺陷、加工及装配中产生的误差,甚至设计时就具有非对称的几何形状等多种因素,使得回转体在旋转时,其上每个微小质点产生的离心惯性力不能相互抵消,离心惯性力通过轴承作用到机械及其基础上,引起振动,产生了噪音,加速轴承磨损,缩短了机械寿命,严重时能造成破坏性事故。为此,必须对转子进行平衡,使其达到允许的平衡精度等级,或使因此产生的机械振动幅度降在允许的范围内。转子动平衡和静平衡的区别。
在转子一个校正面上进行校正平衡,校正后的剩余不平衡量,以保证转子在静态时是在许用不平衡量的规定范围内,为静平衡又称单面平衡。
在转子两个校正面上同时进行校正平衡,校正后的剩余不平衡量,以保证转子在动态时是在许用不平衡量的规定范围内,为动平衡又称双面平衡。
如何选择转子的平衡方式,是一个关键问题。其选择有这样一个原则:只要满足于转子平衡后用途需要的前提下,能做静平衡的,则不要做动平衡,能做动平衡的,则不要做静动平衡。原因很简单,静平衡要比动平衡容易做,省功、省力、省费用。
什么是压力变送器的数字精度和模拟精度,压力变送器样本上的精度是数字精度还是模拟精度。
压力变送器的数字精度以位数算,模拟精度是输出信号的模拟量精度,一般变送器上所注明的是模拟量输出精度,如EJA变送器精度±0.075%,就是输出信号满量程的±0.075%。
应该是在问动态平衡和静态平衡吧。动态平衡是相对的,是在运动和变化中保持平衡,应该从宏观的角度去理解而不应该纠结于个体的行为。简单的理解可以是在一个系统中有出有进,但总的数量保持不变。当然动态平衡并不局...
为何我在“预算书设置”中已经修改了清单和子目工程量的精度,但是在报表中却丝毫未变?请问如何解决? 答:在报表设计器设置。试一试吧。见下图。
随着城市现代化进程的不断发展,日益繁忙的地面交通对地下管网的建设提出了更高的要求。为解决开挖施工与市政设施正常运行之间日益突出的矛盾,非开挖穿越施工技术应运而生。作为非开挖施工方法之一的泥水平衡顶管技术,以其对环境干扰小、不污染环境和安全性高等优点,被广泛运用于穿越公路、河流、建筑物以及闹市区、古迹等限制开挖地段的各种管道铺设。本文介绍泥水平衡顶管技术的工作原理,并重点分析研究顶管施工中精度控制技术。
吊件的平衡及平衡梁设计 1、吊件的平衡方法 因安装工艺的需要 ,在设备吊装中 ,常须使吊件达到平衡 ,有时还须将吊件调 整至精确的水平状态 ,如汽轮机转子的吊装 ,大型分体式电动机转子向定子的穿心 吊装 ,减速器带轴齿轮的装配吊装等。为使吊件达到基本平衡可用吊索的不同绑 结法来达到 ,如可用 3根吊索串联法用装 ;可用两根等长吊索吊装等。但要使吊件 能达到精确的水平状态 ,还需借助一些可以进行微调的工机具才可实现。 1.1 利用手拉葫芦为平衡工具的吊装方法 用手拉葫芦调节吊件水平度是最常用的方法之一 ,如下图所示 ,其中图 α为 吊装带轴齿轮的方法 ,一根吊索绑在轴上 ,另一根吊索通过手拉葫芦绑于联轴器上 , 此方法的手拉葫芦起受用装力和调整吊件水平两个作用。而下图 b则不同 ,吊装 力基本上由吊索承担,手拉葫芦主要起调整吊件水平度的作用。下图 C为球磨 机耳轴端盖的吊装方法 ,主吊索连接
平衡机平衡精度等级和不平衡量计算公式
平衡精度等级的合理选用:
精度等级G | (g.mm/kg) | 转子类型举例 |
G630 | 630 | 刚性安装的船用柴油机的曲轴驱动件;刚性安装的大型四冲程发动机曲轴驱动件. |
G250 | 250 | 刚性安装的高速四缸柴油机的曲轴驱动件. |
G100 | 100 | 六缸和多缸柴油机的曲轴驱动件。汽车、货车和机车用的(汽油、柴油)发动机整机。 |
G40 | 40 | 汽车车轮、箍轮、车轮整体;汽车、货车和机车用的发动机的驱动件。 |
G16 | 16 | 粉碎机、农业机械的零件;汽车、货车和机车用的(汽油、柴油)发动机个别零件。 |
G6.3 | 6.3 | 燃气和蒸气涡轮、包括海轮(商船)主涡轮刚性涡轮发动机转子;透平增压器;机床驱动件;特殊要求的中型和大型电机转子;小电机转子;涡轮泵。 |
G2.5 | 2.5 | 海轮(商船)主涡轮机的齿轮;离心分离机、泵的叶轮;风扇;航空燃气涡轮机的转子部件;飞轮;机床的一般零件;普通电机转子;特殊要求的发动机的个别零件。 |
G1 | 1 | 磁带录音机及电唱机驱动件;磨床驱动件;特殊要求的小型电枢。 |
G0.4 | 0.4 | 精密磨床的主轴、磨轮及电枢、回转仪。 |
不平衡量的简化计算公式:
M ----- 转子质量 单位(kg)
G ------精度等级选用 单位 (g.mm/kg)
r ------ 校正半径 单位(mm)
n ------工件的工作转速 单位(rpm)
m------不平衡合格量 单位(g)
国际标准化组织(ISO)于1940年制定了世界公认的ISO1940平衡等级,它将转子平衡等级分为11个级别,每个级别间以2.5倍为增量,从要求最高的G0.4到要求最低的G4000。单位为公克×毫米/公斤(gmm/kg),代表不平衡对于转子轴心的偏心距离。如下表所示: G4000 具有单数个气缸的刚性安装的低速船用柴油机的曲轴驱动件 G1600 刚性安装的大型二冲程发动机的曲轴驱动件 G630 刚性安装的大型四冲程发动机的曲轴驱动件 弹性安装的船用柴油机的曲轴驱动件 G250 刚性安装的高速四缸柴油机的曲轴驱动件 G100 六缸和多缸高速柴油机的曲轴传动件;汽车、货车和机车用的发动机整机 G40 汽车车轮、轮毂、车轮整体、传动轴,弹性安装的六缸和多缸高速四冲程发动机的曲轴驱动件 G16 特殊要求的驱动轴(螺旋桨、万向节传动轴);粉碎机的零件;农业机械的零件;汽车发动机的个别零件;特殊要求的六缸和多缸发动机的曲轴驱动件 G6.3 商船、海轮的主涡轮机的齿轮;高速分离机的鼓轮;风扇;航空燃气涡轮机的转子部件;泵的叶轮;机床及一般机器零件;普通电机转子;特殊要求的发动机的个别零件 G2.5 燃气和蒸汽涡轮;机床驱动件;特殊要求的中型和大型电机转子;小电机转子;涡轮泵 G1 磁带录音机及电唱机、CD、DVD的驱动件;磨床驱动件;特殊要求的小型电枢 G0.4 精密磨床的主轴;电机转子;陀螺仪 |
上海电动工具研究所。