proportional integral controller
比例调节和积分调节
pi控制器作用
比例调节作用:按比例反应系统的偏差,系统一旦出现了偏差,比例调节立即产生调节作用用以减少偏差。比例作用大,可以加快调节,减少误差,但是过大的比例,使系统的稳定性下降,甚至造成系统的不稳定。
积分调节作用:使系统消除稳态误差,提高无误差度。因为有误差,积分调节就进行,直至无差,积分调节停止,积分调节输出一常值。积分作用的强弱取决于积分时间常数Ti,Ti越小,积分作用就越强。反之Ti大则积分作用弱,加入积分调节可使系统稳定性下降,动态响应变慢。积分作用常与另两种调节规律结合,组成PI调节器或PID调节器。
简单说来,PI控制器各校正环节的作用如下:
1.比例环节 即时成比例的反映控制系统的偏差信号,偏差一旦产生,控制器立即产生控制作用,以减少偏差。通常随着值的加大,闭环系统的超调量加大,系统响应速度加快,但是当增加到一定程度,系统会变得不稳定。
2.积分环节 主要用于消除静差,提高系统的无差度(型别)。 积分作用的强弱取决于积分常数,积分常数越大,积分作用越弱,反之越强。闭环系统的超调量越小,系统的响应速度变慢。
总的来说,在控制工程实践中,PI控制器主要是用来改善控制系统的稳态性能。
适用于具有大惯性,大滞后特性的被控对象。如锅炉温度控制,风力发电机功率控制等。
典型的SPI控制器由如波特率发生器、主控逻辑、收发缓冲、控制部分等几大部分组成。通常SPI通过4个管脚与外部器件相连:MISO:主收从发管脚,仅由从设备控制;单向数据线;MOSI:主发从收管理,仅由主...
微控制器,简单来说就是微型或小型控制器。基本是指由单片机为核心的控制单元,及外部电路组成的控制器。单片机为核心的控制器优点就是开发流程短,可编程,成本低。适用于普通的工业控制,比如简单的信号、简单的逻...
开关(调控开关)
针对高维多变量系统,基于等价传递函数理论研究全矩阵结构的PI控制器设计问题.同时考虑对象的稳态增益和响应速度两个因素,提出一种新的等价传递函数参数化方法;利用等价传递函数与被控过程的传递函数逆阵之间的关系,推导出等价传递函数的解析通式;在此基础上,结合经典的PID控制技术进行多变量系统集中式PI控制方法研究.最后通过典型工业过程实例,验证了所提出设计方法的简单性和有效性.
针对天线控制系统在应用中遇到的问题,从控制算法入手,分析了天线控制系统的组成,介绍了天线控制系统的设计,并对天线控制单元、天线驱动单元、轴角编码单元和安全保护单元做了详细描述。提出比例—模糊—比例积分(P-Fuzzy-PI)控制器,并以此为基础设计了使用的控制算法,并对其进行了仿真,仿真结果表明减小了系统超调,改善了系统动态性能,证实了该控制器的正确性。
比例-模糊-PI控制器是在提高基本模糊控制器的精度和跟踪性能下,对语言变量取更多的语言值,即分挡越细,性能越好。但同时带来的缺点是规则数和系统的计算量也大大地增加,以至模糊控制规则表也更难把握,调试更加困难,或者不能满足实时控制的要求。
由于模糊控制没有积分环节,而且对输入量的处理是离散而有限的,即控制曲面是阶梯形而非平滑的,因而最终必然存在稳态误差,即可能在平衡点附近出现小振幅的振荡现象;而PI控制在小范围内调节效果是较理想的,其积分作用可消除稳态误差。2100433B
图1为单位负反馈控制系统。Gc(s)是控制器,Gp(s)是被控对象的传递函数,由图1可得出闭环系统传递函数为:
可得出控制器的传递函数为:
则其预测 PI 的结构为(式1):
式1中,
第二项为预测控制器,引入预测控制项是为了克服纯滞后对控制系统的不利影响,可理解为控制器在 t 时刻的输出预测值是基于在时间区间
具有比例-积分控制规律的控制器,称PI控制器,其输出信号m(t)同时成比例地反应输入信号e(t)及其积分,即
式中,Kp为可调比例系数;Ti为可调积分时间常数。
在串联校正时,PI控制器相当于在系统中增加了一个位于原点的开环极点,同时也增加了一个位于s左半平面的开环零点。位于原点的极点可以提高系统的型别,以消除或减小系统的稳态误差,改善系统的稳态性能;而增加的负实零点则用来减小系统的阻尼程度,缓和PI控制器极点对系统稳定性及动态过程产生的不利影响。只要积分时间常数Ti足够大,PI控制器对系统稳定性的不利影响可大为减弱。在控制工程实践中,PI控制器主要用来改善控制系统的稳态性能。
具有比例——微分控制规律的控制器,称为PD控制器,其输出m (t)与输入e(t)的关系如下式所示:
式中,Kp为比例系数;
PD控制器中的微分控制规律,能反应输入信号的变化趋势,产生有效的早期修正信号,以增加系统的阻尼程度,从而改善系统的稳定性。在串联校正时,可使系统增加一个
具有比例-积分-微分控制规律的控制器,称PID控制器。这种组合具有三种基本规律各自的特点,其运动方程为
与PI控制器相比,PID控制器除了同样具有提高系统的稳态性能的优点外,还多提供一个负实零点,从而在提高系统动态性能方面,具有更大的优越性。因此,在工业过程控制系统中,广泛使用PID控制器。PID控制器各部分参数的选择,在系统现场调试中最后确定。通常,应使I部分发生在系统频率特性的低频段,以提高系统的稳态性能;而使D部分发生在系统频率特性的中频段,以改善系统的动态性能。