中文名 | 拟螺旋 | 所属行业 | 石油化工 |
---|
拟螺旋现就几种新型换热器的特点简介如下:
一、气动喷涂翅片管换热器
俄罗斯提出了一种先进方法,即气动喷涂法,来提高翅片化表面的性能。其实质是采用高速的冷的或稍微加温的含微粒的流体给翅片表面喷镀粉末粒子。用该方法不仅可喷涂金属还能喷涂合金和陶瓷(金属陶瓷混合物),从而得到各种不同性能的表面。通常在实践中翅片底面的接触阻力是限制管子加装翅片的因素之一。为了评估翅片管换热器元件进行了试验研究。试验是采用在翅片表面喷涂ac-铝,并添加了24a白色电炉氧化铝。将试验所得数据加以整理,便可评估翅片底面的接触阻力。
将研究的翅片的效率与计算数据进行比较,得出的结论是:气动喷涂翅片的底面的接触阻力对效率无实质性影响。为了证实这一点,又对基部(管子)与表面(翅片)的过渡区进行了金相结构分析。
对过渡区试片的分析表明,连接边界的整个长度上无不严密性的微裂纹。所以,气动喷涂法促进表面与基本相互作用的分支边界的形成,能促进粉末粒子向基体的渗透,这就说明了附着强度高,有物理接触和金属链形成。因而气动喷涂法不但可用于成型,还可用来将按普通方法制造的翅片固定在换热器管子的表面上,也可用来对普通翅片的底面进行补充加固。可以预计,气动喷涂法在紧凑高效换热器的生产中,将会得到广泛应用。
二、螺旋折流板换热器
在管壳式换热器中,壳程通常是一个薄弱环节。通常普通的弓形折流板能造成曲折的流道系统(z字形流道),这样会导致较大的死角和相对高的返混。而这些死角又能造成壳程结垢加剧,对传热效率不利。返混也能使平均温差失真和缩小。其后果是,与活塞流相比,弓形折流板会降低净传热。优越弓形折流板管壳式换热器很难满足高热效率的要求,故常为其他型式的换热器所取代(如紧凑型板式换热器)。对普通折流板几何形状的改进,是发展壳程的第一步。虽然引进了密封条和附加诸如偏转折流板及采取其他措施来改进换热器的性能,但普通折流板设计的主要缺点依然存在。
为此,美国提出了一种新方案,即建议采用螺旋状折流板。这种设计的先进性已为流体动力学研究和传热试验结果所证实,此设计已获得专利权。此种结构克服了普通折流板的主要缺点。螺旋折流板的设计原理很简单:将圆截面的特制板安装在“拟螺旋折流系统”中,每块折流板占换热器壳程中横剖面的四分之一,其倾角朝向换热器的轴线,即与换热器轴线保持一倾斜度。相邻折流板的周边相接,与外圆处成连续螺旋状。折流板的轴向重叠,如欲缩小支持管子的跨度,也可得到双螺旋设计。螺旋折流板结构可满足相对宽的工艺条件。此种设计具有很大的灵活性,可针对不同操作条件,选取最佳的螺旋角;可分别情况选用重叠折流板或是双螺旋折流板结构。
三、新型麻花管换热器
瑞典alares公司开发了一种扁管换热器,通常称为麻花管换热器。美国休斯顿的布朗公司做了改进。螺旋扁管的制造过程包括了“压扁”与“热扭”两个工序。改进后的麻花管换热器同传统的管壳式换热器一样简单,但有许多激动人心的进步,它获得了如下的技术经济效益:改进了传热,减少了结垢,真正的逆流,降低了成本,无振动,节省了空间,无折流元件。
由于管子结构独特使管程与壳程同时处于螺旋运动,促进了湍流程度。该换热器总传热系数较常规换热器高40%,而压力降几乎相等。组装换热器时也可采用螺旋扁管与光管混合方式。该换热器严格按照asme标准制造。凡是用管壳式换热器和传统装置之处均可用此种换热器取代。它能获得普通管壳式换热器和板框式传热设备所获得的最佳值。估计在化工、石油化工行业中具有广阔的应用前景。
四、非钎焊绕丝筋管螺旋管式换热器
在管子上缠绕金属丝作为筋条(翅片)的螺旋管式换热器(ta),一般都是采用焊接方法将金属丝固定在管子上。但这种方法对整个设备的质量有一系列的影响,因为钎焊法必将从换热中“扣除”很大一部分管子和金属丝的表面。更重要的是,由于焊料迅速老化和破碎会造成机器和设备堵塞,随之提前报损。2100433B
用螺旋绞刀把料推出去,类似绞肉机
通过拉伸机拉伸形成。首先,用图纸进行计算,确定钢板下料尺寸;用钢板下料;进行拉伸到所需要的螺旋螺距;焊接到螺旋机的轴上。
建议用现浇板绘制定义斜板。
螺旋管的知识 .txt 爱一个人很难,恨一个人更难,又爱又恨的人最难。爱情 永远不可能是天平, 想在爱情里幸福就要舍得伤心! 有些烦恼是我们凭空虚构的, 而我们却把它当成真实去承受。 化学分析 , 螺旋 , 亚砷酸钠 , 钢铁 , 合金 1 范围 本标准规定了低压流体输送管道用螺旋缝埋弧焊钢管 (以下简称“钢管” )的 尺寸、外形、重量、技术要求、试验方法、检验规则、涂层、标志及质量证明书。 本标准适用于水、污水、空气、采暖蒸汽和可燃性流体等普通低压流体输送 管道用钢管,也适用于具有类似要求的其他流体输送管道用钢管。 2 引用标准 下列标准所包含的条文,通过在本标淮中引用而构成为本标准的条文。本标 准出版时,所示版本均为有效。所有标准都会被修订,使用本标准的各方应探讨 使用下列标准最新版本的可能性。 GB/T 222 —1984 钢的化学分析用试样取样法及成品化学成分允许偏差 GB/T 2
螺旋-转角-螺旋(helix-turn-helix)是最初在λ噬菌体的阻遏蛋白中发现的一种DNA结合结构域。在阻遏蛋白氨基端有5段 α 螺旋,每段螺旋之间折转成一定角度相连接,其中两段负责同DNA结合(图7-6)。。螺旋3由9个氨基酸组成,与前面的由7个氨基酸组成的。螺旋2形成一个角度。α螺旋3通过氨基酸侧链同DNA碱基之间的氢键同DNA序列相结合,3个氨基酸识别3个碱基,所以 α 螺旋3被称为识别螺旋(recognition helix)。α螺旋2则是通过氢键同DNA的磷酸骨架相接触。这种相互作用对于同DNA结合是必需的,但并不控制对靶序列识别的专一性。
最早在原核基因的激活蛋白和阻遏蛋白中发现的调控蛋白, 是一种同型二聚体。
随着计算机技术和数值算法的不断发展,通过数值模拟手段研究矿物分选过程逐渐成为矿物加工领域的重要研究方向。本研究应用计算流体力学(CFD)和离散元(DEM)耦合的数值模拟方法,从微观角度对颗粒在螺旋溜槽中的运动行为进行模拟研究,探讨其在螺旋溜槽分选空间的运动规律及其影响因素,建立螺旋溜槽分选数值模型,并通过颗粒分离试验结果对分选数值模型进行验证,在此基础上借助于数值模拟二次开发对模拟过程及分选数值模型进行优化控制,以提高模拟研究的可靠性和精确度。本研究旨在推进矿物分选从以常规条件试验研究为主向以数值试验研究为主甚至虚拟现实转变,改变某些变量对分选过程的影响仅限于定性分析的状况,为对其进行定量描述创造条件。研究将围绕螺旋溜槽流场数值模拟、颗粒运动行为数值模拟及分选数值模型的验证与优化逐步展开,着重探讨不同变量对颗粒运动行为的协同作用,为更好地发挥复合力场分选的独特优势奠定基础。
模拟开关,英文名Analog switches;主要是完成信号链路中的信号切换功能。采用MOS管的开关方式实现了对信号链路关断或者打开;由于其功能类似于开关,而用模拟器件的特性实现,成为模拟开关。