纳米液体壁纸又名液体墙纸、壁纸漆、涂料壁纸等。所以,纳米图即为墙纸原有的图纸或造型。
中文名称 | 纳米图 | 又名 | 液体墙纸、壁纸漆、涂料壁纸等 |
---|
纳米材料就是指尺寸在0.1-100nm间的材料(1nm=0.000000001米),而纳米板是吊顶行业中的一种板材,指的是在基础板材上表面采用纳米材料进行处理,这样就能抗刮,耐腐蚀。
您好 1微米=10的-6次方米 1纳米=10的-9次方米 即,1微米(u)=1000纳米(nm)
1000纳米等于1微米,1000微米等于1毫米,1000毫米等于1米,也就是说一纳米等于十亿分之一米,这相当于一根头发丝横切面的六万分之一,所谓“纳米科技”,就是在0.1~100纳米的尺度上,研究和利...
本文介绍碳纳米管的发现、制备,以及它的性能和应用。
纳米材料新星:碳纳米管
纳米技术是一门交叉性很强的综合学科,研究的内容涉及现代科技的广阔领域。1993年,国际纳米科技指导委员会将纳米技术划分为纳米电子学、纳米物理学、纳米化学、纳米生物学、纳米加工学和纳米计量学等6个分支学科。其中,纳米物理学和纳米化学是纳米技术的理论基础,而纳米电子学是纳米技术最重要的内容。
纳米科技是90年代初迅速发展起来的新兴科技,其最终目标是人类按照自己的意识直接操纵单个原子、分子,制造出具有特定功能的产品。纳米科技以空前的分辨率为我们揭示了一个可见的原子、分子世界。这表明,人类正越来越向微观世界深入,人们认识、改造微观世界的水平提高了前所未有的高度。有资料显示,2010年,纳米技术将成为仅次于芯片制造的第二大产业。
纳米科技nanotechnology)
纳米技术其实就是一种用单个原子、分子制造物质的技术。
从迄今为止的研究状况看,关于纳米技术分为三种概念。第一种,是1986年美国科学家德雷克斯勒博士在《创造的机器》一书中提出的分子纳米技术。根据这一概念,可以使组合分子的机器实用化,从而可以任意组合所有种类的分子,可以制造出任何种类的分子结构。这种概念的纳米技术未取得重大进展。
第二种概念把纳米技术定位为微加工技术的极限。也就是通过纳米精度的“加工”来人工形成纳米大小的结构的技术。这种纳米级的加工技术,也使半导体微型化即将达到极限。现有技术即便发展下去,从理论上讲终将会达到限度。这是因为,如果把电路的线幅变小,将使构成电路的绝缘膜的为得极薄,这样将破坏绝缘效果。此外,还有发热和晃动等问题。为了解决这些问题,研究人员正在研究新型的纳米技术。
第三种概念是从生物的角度出发而提出的。本来,生物在细胞和生物膜内就存在纳米级的结构。
纳米科技包括纳米生物学、纳米电子学、纳米材料学、纳米机械学、纳米化学等学科。从包括微电子等在内的微米科技到纳米科技,人类正越来越向微观世界深入,人们认识、改造微观世界的水平提高到前所未有的高度。我国著名科学家钱学森也曾指出,纳米左右和纳米以下的结构是下一阶段科技发展的一个重点,会是一次技术革命,从而将引起21世纪又一次产业革命。
虽然距离应用阶段还有较长的距离要走,但是由于纳米科技所孕育的极为广阔的应用前景,美国、日本、英国等发达国家都对纳米科技给予高度重视,纷纷制定研究计划,进行相关研究
纳米科技(英文:Nanotechnology)是一门应用科学,其目的在于研究于纳米尺寸时,物质和设备的设计方法、组成、特性以及应用。纳米科技是许多如生物、物理、化学等科学领域在技术上的次级分类,美国的国家纳米科技启动计划(National Nanotechnology Initiative)将其定义为“1至100纳米尺寸间的物体,其中能有重大应用的独特现象的了解与操纵。”
纳米科技是尖端科技,却早就存在身旁。举例来说,荷叶表面的细致结构和粗糙度大小都在纳米尺度的范围内,所以不易吸附污泥灰尘。这种荷叶表面纳米化结构,自我清洁的物理现象,就被称作荷叶效应(lotus effect)。
纳米科技是学习纳米尺度下的现象以及物质的掌控,尤其是现存科技在纳米时的延伸。纳米科技的世界为原子、分子、高分子、量子点和高分子集合,并且被表面效应所掌控,如范德瓦耳斯力、氢键、电荷、离子键、共价键、疏水性、亲水性和量子穿隧效应等,而惯性和湍流等巨观效应则小得可以被忽略掉。举个例子,当表面积对体积的比例剧烈地增大时,开起了如催化学等以表面为主的科学新的可能性。
微小性的持续探究以使得新的工具诞生,如原子力显微镜和扫描隧道显微镜等。结合如电子束微影之类的精确程序,这些设备将使我们可以精密地运作并生成纳米结构。纳米材质,不论是由上至下制成(将块材缩至纳米尺度,主要方法是从块材开始通过切割、蚀刻、研磨等办法得到尽可能小的形状(比如超精度加工,难度在于得到的微小结构必须精确)。
或由下至上制成(由一颗颗原子或分子来组成较大的结构,主要办法有化学合成,自组装(self assembly)和定点组装(positional assembly)。难度在于宏观上要达到高效稳定的质量,都不只是进一步的微小化而已。物体内电子的能量量子化也开始对材质的性质有影响,称为量子尺度效应,描述物质内电子在尺度剧减后的物理性质。
这一效应不是因为尺度由巨观变成微观而产生的,但它确实在纳米尺度时占了很重要的地位。物质在纳米尺度时,会和它们在巨观时有很大的不同,例如:不透明的物质会变成透明的(铜)、惰性的物质变成可以当催化剂(铂)、稳定的物质变得易燃(铝)、固体在室温下变成了液体(金)、绝缘体变成了导体(硅)。
纳米科技的神奇来自于其在纳米尺度下所拥有的量子和表面现象,并因此可能可以有许多重要的应用和制造许多有趣的材质。