马氏体的三维组织形态通常有片状(plate)或者板条状(lath),片状马氏体在金相观察中(二维)通常表现为针状(needle-shaped),这也是为什么在一些地方通常描述为针状、竹叶状的原因,板条状马氏体在金相观察中为细长的条状或板状。奥氏体中含碳量≥1%的钢淬火后,马氏体形态为针片状马氏体,当奥氏体中含碳量≤0.2%的钢淬火后,马氏体形状基本为板条马氏体。马氏体的晶体结构为体心四方结构(BCT)。中高碳钢中加速冷却通常能够获得这种组织。高的强度和硬度是钢中马氏体的主要特征之一,同时马氏体的脆性也比较高。
常见马氏体组织有两种类型。中低碳钢淬火获得板条状马氏体,板条状马氏体是由许多束尺寸大致相同,近似平行排列的细板条组成的组织,各束板条之间角度比较大;高碳钢淬火获得针状马氏体,针状马氏体呈竹叶或凸透镜状,针叶一般限制在原奥氏体晶粒之内,针叶之间互成60°或120°角。
马氏体转变同样是在一定温度范围内(Ms-Mz)连续进行的,当温度达到Ms点以下,立即有部分奥氏体转变为马氏体。板条状马氏体有很高的强度和硬度,较好的韧性,能承受一定程度的冷加工;针状马氏体又硬又脆,无塑性变形能力。马氏体转变速度极快,转变时体积产生膨胀,在钢丝内部形成很大的内应力,所以淬火后的钢丝需要及时回火,防止应力开裂。
19世纪90年代最先由德国冶金学家阿道夫·马滕斯(Adolf Martens,1850-1914)于在一种硬矿物中发现。马氏体最初是在钢(中、高碳钢)中发现的:将钢加热到一定温度(形成奥氏体)后经迅速冷却(淬火),得到的能使钢变硬、增强的一种淬火组织。1895年法国人奥斯蒙(F.Osmond)为纪念德国冶金学家马滕斯(A.Martens),把这种组织命名为马氏体(Martensite)。人们最早只把钢中由奥氏体转变为马氏体的相变称为马氏体相变。20世纪以来,对钢中马氏体相变的特征累积了较多的知识,又相继发现在某些纯金属和合金中也具有马氏体相变,如:Ce、Co、Hf、Hg、La、Li、Ti、Tl、Pu、V、Zr、和Ag-Cd、Ag-Zn、Au-Cd、Cu-Al、Cu-Sn、Cu-Zn、In-Tl、Ti-Ni等。广泛地把基本特征属马氏体相变型的相变产物统称为马氏体(见固态相变)。
没有的 ; 316钢材从分类上来说应该是属于不锈钢,更精确的分类应该是归属于不锈铁,主要用于机械加工,比正常的不锈钢具有更好的性价比,因此在对耐腐蚀...
马氏体不锈钢指的是400系列的不锈钢
你好,控氮马氏体不锈钢的特性是;含碳量高,碳的质量分数最高可达0.6%。硬度高.强度高,防腐蚀性能好但是焊接性比较差,主要用于具模具,地下管道、、刃具等等。以上大概就是控氮马氏体不锈钢的特性,希望可以...
马氏体由奥氏体急速冷却(淬火)形成,这种情况下奥氏体中固溶的碳原子没有时间扩散出晶胞。当奥氏体到达马氏体转变温度(Ms)时,马氏体转变开始产生,母相奥氏体组织开始不稳定。在Ms以下某温度保持不变时,少部分的奥氏体组织迅速转变,但不会继续。只有当温度进一步降低,更多的奥氏体才转变为马氏体。最后,温度到达马氏体转变结束温度Mf,马氏体转变结束。马氏体还可以在压力作用下形成,这种方法通常用在硬化陶瓷上(氧化钇、氧化锆)和特殊的钢种(高强度、高延展性的钢)。因此,马氏体转变可以通过热量和压力两种方法进行。
马氏体和奥氏体的不同在于,马氏体是体心正方结构,奥氏体是面心立方结构。奥氏体向马氏体转变仅需很少的能量,因为这种转变是无扩散位移型的,仅仅是迅速和微小的原子重排。马氏体的密度低于奥氏体,所以转变后体积会膨胀。相对于转变带来的体积改变,这种变化引起的切应力、拉应力更需要重视。
马氏体在Fe-C相图中没有出现,因为它不是一种平衡组织。平衡组织的形成需要很慢的冷却速度和足够时间的扩散,而马氏体是在非常快的冷却速度下形成的。由于化学反应(向平衡态转变)温度高时会加快,马氏体在加热情况下很容易分解。这个过程叫做回火。在某些合金中,加入合金元素会减少这种马氏体分解。比如,加入合金元素钨,形成碳化物强化机体。由于淬火过程难以控制,很多淬火工艺通过淬火后获得过量的马氏体,然后通过回火去减少马氏体含量,直到获得合适的组织,从而达到性能要求。马氏体太多将使钢变脆,马氏体太少会使钢变软。
性能
众所周知,马氏体是强化钢件的重要手段,而且一般认为,马氏体是一种硬而脆的组织,尤其是高碳片状马氏体。要想提高淬火钢的塑性和韧性,必须用提高回火温度的方法,牺牲部分强度而换取韧性,就是说强度和塑性很难兼得。但是近年来的研究工作表明,这种观点只是适用于片状马氏体,而板条状马氏体不是这样,板条状马氏体不但具有很高的强度而且具有良好的塑性和韧性,同时还具有低的脆性转变温度,其缺口敏感性和过载敏感性都较低。
马氏体的硬度和强度
钢中马氏体机械性能的显著特点是具有高硬度和高强度。马氏体的硬度主要取决于马氏体的含碳质量分数。马氏体的硬度随质量分数的增加而升高,当含碳质量分数达到0.6%时,淬火钢硬度接近最大值,含碳质量分数进一步增加,虽然马氏体的硬度会有所提高,但由于残余奥氏体数量增加,反而使钢的硬度有所下降。合金元素对钢的硬度关系不大,但可以提高其强度。
马氏体具有高硬度和高强度的原因是多方面的,其中主要包括固溶强化、相变强化、时效强化以及晶界强化等。
(1)固溶强化。首先是碳对马氏体的固溶强化。过饱的间隙原子碳在a相晶格中造成晶格的正方畸变,形成一个强烈的应力场。该应力场与位错发生强烈的交换作用,阻碍位错的运动从而提高马氏体的硬度和强度。
(2)相变强化。其次是相变强化。马氏体转变时,在晶格内造成晶格缺陷密度很高的亚结构,如板条马氏体中高密度的位错、片状马氏体中的孪晶等,这些缺陷都阻碍位错的运动,使得马氏体强化。这就是所谓的相变强化。实验证明,无碳马氏体的屈服强度约为284Mpa,此值与形变强化铁素体的屈服强度很接近,而退火状态铁素体的屈服强度仅为98~137Mpa,这就说明相变强化使屈服强度提高了147~186MPa
(3)时效强化。时效强化也是一个重要的强化因素。马氏体形成以后,由于一般钢的点Ms大都处在室温以上,因此在淬火过程中及在室温停留时,或在外力作用下,都会发生自回火。即碳原子和合金元素的原子向位错及其它晶体缺陷处扩散偏聚或碳化物的弥散析出,钉轧位错,使位错难以运动,从而造成马氏体的时效强化。
(4)原始奥氏体晶粒大小及板条马氏体束大小对马氏体强度的影响。原始奥氏体晶粒大小及板条马氏体束的尺寸对马氏体强度也有一定影响。原始奥氏体晶粒越细小、马氏体板条束越小,则马氏体强度越高。这是由于相界面阻碍位错的运动造成的马氏体强化。
马氏体的塑性和韧性
马氏体的塑性和韧性主要取决于马氏体的亚结构。片状马氏体具有高强度高硬度,但韧性很差,其特点是硬而脆。在具有相同屈服强度的条件下,板条马氏体比片状马氏体的韧性好很多,即在具有较高强度、硬度的同时,还具有相当高的韧性和塑性。
其原因是由于在片状马氏体中孪晶亚结构的存在大大减少了有效滑移系;同时在回火时,碳化物沿孪晶不均匀析出使脆性增大;此外,片状马氏体中含碳质量分数高,晶格畸变大,淬火应力大,以及存在大量的显微裂纹也是其韧性差的原因。而板条马氏体中含碳质量分数低,可以发生“自回火”,且碳化物分布均匀;其次在胞状位错亚结构中位错分布不均匀,存在低密度位错区,为位错提供了活动余地,由于位错运动能缓和局部应力集中。
为什么片状马氏体和板条马氏体在性能上有很大的差异呢?近年来做了大量的研究工作,有关使马氏体强度高的原因是很多的,如碳原子的固溶强化、相变强化以及时效强化等,其中以碳原子强化起主要作用,而且马氏体中固溶的碳越多强度也越高,所以马氏体有很高的强度;但韧性的变化却随马氏体中含碳量的增加而下降,当马氏体含碳量很高时(大于0.6%C)即使经过低温回火韧性也很低,为了弄清楚影响韧性的原因,作了如下实验,研究了马氏体的亚结构和韧性的关系。用含碳量为0.35%的碳钢,淬火后得到位错型的板条状马氏体,其强度和韧性都比较高,为了改变其亚结构,在该种钢中加入铬元素,随着铬含量的增加,马氏体的亚结构由位错型向孪晶型转化,即孪晶型马氏体数量逐渐增加,位错型马氏体数量逐渐减少,经测定其断裂韧性KIC逐渐降低,而且发现,在屈服强度相同的条件下,亚结构为位错型的马氏体的断裂韧性高于亚结构为孪晶型的马氏体的断裂韧性。经过回火后仍然是位错型的马氏体的断裂韧性高于孪晶型马氏体的断裂韧性。这个规律已用大量的实验得到了证实。断裂韧性值位错马氏体比孪晶马氏体高三倍,而马氏体的韧性主要决定于马氏体的亚结构。
为什么亚结构为位错型的马氏体韧性高,而孪晶型马氏体的韧性低呢?这是因为位错型马氏体有一定的塑性变形能力,可以缓冲矛盾。而孪晶马氏体不能发生塑性变形,另外,孪晶面的存在,在回火时碳化物沿孪晶面析出,造成碳的分布不均匀,因而使片状马氏体很脆。
板条状马氏体是低碳钢,马氏体时效钢,不锈钢等铁系合金形成的一种典型的马氏体组织,因其单元立体形状为板条状,故称板条状马氏体。由于它的亚结构主要是由高密度的位错组成,所以又称位错马氏体。片状马氏体则常见于高,中碳钢,每个马氏体晶体的厚度与径向尺寸相比很小其断面形状呈针片状,故称片状马氏体或针状马氏体.由于其亚结构主要为细小孪晶,所以又称为孪晶马氏体.一般当Wc<0.3%时,钢在马氏体形态几乎全为板条马氏体;当Wc>1.0%时,则几乎全为片状马氏体;当Wc=0.3%-1.0%时,为板条马氏体和片状马氏体的混合物,随含碳量的升高,淬火钢中板条马氏体的量下降,片状马氏体的量上升.高碳钢在正常温度淬火时,细小的奥氏体晶粒和碳化物都能使其获得细针状马氏体组,这种组织在光学显微镜下无法分辨称为隐针马氏体。
马氏体不锈钢能在退火、和硬化与回火的状态下焊接,无论钢材的原先状态如何,经过焊接后都会在邻近焊道处产生一硬化的马氏体区,热影响区的硬度主要是取决于母材金属的碳含量,当硬度增加时,则韧性减少,且此区域变成较易产生龟裂、预热和控制层间温度,是避免龟裂的最有效方法,为得最佳的性质,需焊后热处理。
马氏体不锈钢是一类可以通过热处理(淬火、回火)对其性能进行调整的不锈钢,通俗地讲,是一类可硬化的不锈钢。这种特性决定了这类钢必须具备两个基本条件:一是在平衡相图中必须有奥氏体相区存在,在该区域温度范围内进行长时间加热,使碳化物固溶到钢中之后,进行淬火形成马氏体,也就是化学成分必须控制在γ或γ α相区,二是要使合金形成耐腐蚀和氧化的钝化膜,铬含量必须在10.5%以上。按合金元素的差别,可分为马氏体铬不锈钢和马氏体铬镍不锈钢。
马氏体铬不锈钢的主要合金元素是铁、铬和碳。图1-4是Fe-Cr系相图富铁部分,如Cr大于13%时,不存在γ相,此类合金为单相铁素体合金,在任何热处理制度下也不能产生马氏体,为此必须在内Fe-Cr二元合金中加入奥氏体形成元素,以扩大来说,C、N是有效元素,C、N元素添加使得合金允许更高的铬含量。在马氏体铬不锈钢中,除铬外,C是另一个最重要的必备元素,事实上,马氏体铬不锈耐热钢是一类铁、铬、碳三元合金。当然,还有其他元素,利用这些元素,可根据Schaeffler图确定大致的组织。2100433B
4.4 马氏体不锈钢 4.4.1、常用马氏体不锈钢的钢号、化学成分和性能特点。 1、 Cr13 型 (1) 此类钢的化学成分见表 2-8 表 2-8 1Cr13,2Cr13,3Cr13,4Cr13 钢的化学成分, % ① 钢 号 C Si Mn Cr S P 1Cr13 ≤0.15 ≤1.00 ≤1.00 11.5-13.5 ≤0.030 ≤0.035 2Cr13 0.16-0.25 ≤1.00 ≤1.00 12-14 ≤0.030 ≤0.035 3Cr13 0.26-0.35 ≤1.00 ≤1.00 12-14 ≤0.030 ≤0.035 4Cr13 0.36-0.45 ≤0.60 ≤0.80 12-14 ≤0.030 ≤0.035 ① GB1220-92 (2)力学性能 1Cr13,2Cr13,3Cr13,4Cr13 钢的力学性能分别见表 2-9至表 2-16。 表 2-9
马氏体钢主要是600MPa 以上的一些高强度钢种,如800MPa 以上级别的工程机械用钢,600MPa以上级别的压力容器和储罐用钢等。一般有在线淬火 回火及轧后淬火回火(调质处理)两种生产工艺。马氏体的高强度是由于高密度的位错,细小的孪晶,碳的偏聚,以及马氏体正方度的间隙固溶等。低碳马氏体的形态基本上是板条状,板条状之间是小角度晶界,板条内有很高的位错密度,有时还能见到孪晶马氏体分布于板条之间。但淬火后的马氏体的塑韧性较差,一般马氏体钢在淬火后都要通过回火工艺以调整钢的强韧性匹配,典型组织如图《马氏体钢典型金相结构》所示。
凡是碳含量小于0.25%的碳素钢或低碳低合金结构钢经强烈淬火,获得80%以上甚至100%低碳马氏体组织,这类钢统称为低碳马氏体钢。一般情况下,含碳量在0.15%~0.25%范围内的钢淬火强化效果好,综合力学性能高。
1.低碳马氏体钢热处理工艺特点
(1)获取低碳马氏体的热处理淬火加热温度为Ac3 (80~120)℃。从淬火强化的效果考虑,适当提高淬火加热温度,有利于奥氏体的均匀化、提高钢的淬透性以及缩短加热时间。
(2)采用激冷、深冷的强烈淬火冷却方法(5%~10%NaCl溶液淬火或10%NaOH溶液淬火)。低碳钢或低碳低合金钢在强烈淬火后可获得低碳马氏体。
(3)低碳马氏体淬火后可不经回火而直接使用。
2.低碳马氏体的微观组织
低碳马氏体的显微组织由不同位向的的马氏体板条组成,板条束间为大角度晶界。由于原奥氏体晶粒被不同位向的板条束所分割,所以材料的有效晶粒得到细化。同时,板条马氏体内有高密度的位错和细小分散呈魏氏组态分布的碳化物,板条马氏体间分布有残余奥氏体薄膜,因而低碳马氏体具有优良的强韧特性。
3.低碳马氏体钢的性能
经过淬火有较低的缺口敏感性、过热敏感性、优良的冷加工性、良好的可焊性且热处理变形小等一系列的优点。低碳马氏体钢经过淬火后,可获得脆性较低而塑韧性足够高的位错板条马氏体加板条相界残余奥氏体薄膜,板条内部自回火析出细小分散的碳化物,因而可实现强度、塑性、韧性的最佳配合,是固熔强化、位错强化、晶界强化和沉淀强化等共同作用的结果。低碳马氏体中温回火后代替中碳(合金)结构钢的调质件,其综合力学性能完全可达到要求,而且不论形状如何复杂,淬火后不易变形、开裂,这样不仅可给后工序少留加工量,而且给机加工也带来好处。低碳马氏体钢由于含碳量较低,钢的Ms点较高,在淬火过程中就伴随着自回火现象,因而可以省去回火工序,从而节约能源,降低成本,缩短加工周期。
低碳马氏体钢是典型的强塑韧配合材料,用处非常广泛。
它的显微组织为马氏体。这类钢中铬的质量分数为11.5%~18.0%,但碳的质量分数最高可达0.6%。碳含量的增高,提高了钢的强度和硬度。在这类钢中加入的少量镍可以促使生成马氏体,同时又能提高其耐蚀性。这类钢的焊接性较差。列入国家标准牌号的钢板有1Cr13、2 Cr13、3 Cr13、1 Cr17Ni2等。
奥氏体型不锈钢
其显微组织为奥氏体。它是在高铬不锈钢中添加适当的镍(镍的质量分数为8%~25%)而形成的,具在奥氏体组织的不锈钢。奥氏体型不锈钢以Cr18Ni19铁基合金为基础,在此基础上随着不同的用途,发展成图1-2所示的铬镍奥氏体不锈钢系列。
奥氏体型不锈钢一般属于耐蚀钢,是应用最广泛的一类钢,其中以18-8型不锈钢最有代表性,它是有较好的力学性能,便于进行机械加工、冲压和焊接。在氧化性环境中具有优良的耐腐蚀性能和良好的耐热性能。但对溶液中含有氯离子(CL-)的介质特别敏感,易于发生应力腐蚀。18-8型不锈钢按其化学成分中碳含量的不同又分为三个等级:一般含碳量(Wc≤0.15%)低碳级
(Wc≤0.08%)和超低碳级(Wc≤0.03%)。例如中国国家标准中的1Cr18Ni9Ti、0Cr18Ni9、00Cr17Ni14M02三种钢板分属上面三个等级。世界许多国家都感到镍储量的紧缺。为了节省镍,早在四、五十年代世界上就开始用锰和氮取代18-8型不锈钢中的部分镍。研制并列入国家标准的钢板牌号有1Cr17Mn6Ni5N和0Cr19Ni9N等。
奥氏体-铁素体型不锈钢
其显微组织为奥氏体加铁素体。铁素体的体积分数小于10%的不锈钢,是在奥氏体钢基础上发展的钢种。
沉淀硬化型不锈钢
按其组织形态可分为三类:沉淀硬化半奥氏体型、沉淀硬化马氏体型和沉淀硬化奥氏体型不锈钢。列入中国国家标准钢板牌号的有0Cr17Ni7A、0Cr17Ni4Cu4Nb和0Cr15Ni7M02Al三种,是属于沉淀硬化半奥氏体型不锈钢。该钢的组织特点是在固溶或退火状态时具有奥氏体加体积分数为5%~20%的铁素体组织。这种钢经过系列的热处理或机械变形处理后奥氏体转变为马氏体,再通过时效析出硬化达到所需要的高强度。这种钢有很好的成形性能和良好的焊接性,可作为超高强度的材料在核工业、航空和航天工业中,得到应用。